Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6021–6032 | Cite as

Metallocene-Catalyzed Copolymerization of Ethylene and 1-Hexene in the Presence of Graphene/MgAl LDH Nanofiller: Effect on the Activity, SCB, and Thermal Stability

  • Muhammad Daud
  • Farrukh Shehzad
  • Mamdouh A. Al-HarthiEmail author
Research Article - Chemical Engineering


Nanofiller based on graphene and MgAl layered double hydroxides (G/LDHs) were synthesized successfully by co-precipitation method with varying graphene contents. The in situ polymerization of ethylene was conducted using 1-hexene as comonomer, zirconocene as a catalyst, MAO as co-catalyst, and G/LDHs as drop-in nanofiller. An increase in catalytic activity was recorded due to the addition of nanofiller. Furthermore, a maximum catalytic activity was observed for the nanofiller containing 100 mg of graphene. However, nanofiller containing higher amount graphene reduced the activity due to agglomeration of the graphene nanoparticles. Moreover, the degree of crystallinity decreased due to the addition of short chain branching in the copolymers. The thermal stability of the copolymers was analyzed using TGA. The effective activation energy (\(E_\mathrm{A})\) was calculated using the Friedman method. The \(E_\mathrm{A}\) profiles thus obtained have revealed that the polymer nanocomposites having 100 mg of graphene have highest thermal stability than the neat copolymers.


Graphene Layered double hydroxides Hybrid materials Polymer nanocomposites Catalytic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zou, H.; Wu, S.; Shen, J.: Polymer/silica nanocomposites: preparation, characterization, propertles, and applications. Chem. Rev. 108, 3893–3957 (2008). CrossRefGoogle Scholar
  2. 2.
    Reddy, K.R.; Sin, B.C.; Ryu, K.S.; Noh, J.; Lee, Y.: In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Metals 159, 1934–1939 (2009). CrossRefGoogle Scholar
  3. 3.
    Thakur, V.; Kessler, M.: Polymer Nanocomposites: New Advanced Dielectric Materials for Energy Storage Applications. In: Advanced Energy Materials. pp. 207–257. Wiley Blackwell, Hoboken (2014)CrossRefGoogle Scholar
  4. 4.
    Reddy, K.R.; Park, W.; Sin, B.C.; Noh, J.; Lee, Y.: Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335, 34–39 (2009). CrossRefGoogle Scholar
  5. 5.
    Zhang, M.; Li, Y.; Su, Z.; Wei, G.: Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6, 6107–6124 (2015). CrossRefGoogle Scholar
  6. 6.
    Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer (Guildf) 52, 5–25 (2011). CrossRefGoogle Scholar
  7. 7.
    Oshima, K.; Sadakata, S.; Asano, H.; Shiraishi, Y.; Toshima, N.: Thermostability of hybrid thermoelectric materials consisting of poly(Ni-ethenetetrathiolate), polyimide and carbon nanotubes. Materials (Basel) 10, 824 (2017). CrossRefGoogle Scholar
  8. 8.
    Ambuken, P.V.; Stretz, H.A.; Koo, J.H.; Messman, J.M.; Wong, D.: Effect of addition of montmorillonite and carbon nanotubes on a thermoplastic polyurethane: high temperature thermomechanical properties. Polym. Degrad. Stab. 102, 160–169 (2014). CrossRefGoogle Scholar
  9. 9.
    Ambuken, P.; Stretz, H.; Koo, J.H.; Lee, J.; Trejo, R.: High-temperature flammability and mechanical properties of thermoplastic polyurethane nanocomposites. In: Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science, pp. 343–360. (2012)Google Scholar
  10. 10.
    Choi, S.H.; Kim, D.H.; Raghu, A.V.; Reddy, K.R.; Lee, H.-I.; Yoon, K.S.; Jeong, H.M.; Kim, B.K.: Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. Part B 51, 197–207 (2012). CrossRefGoogle Scholar
  11. 11.
    Khan, M.U.; Reddy, K.R.; Snguanwongchai, T.; Haque, E.; Gomes, V.G.: Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci. 294, 1599–1610 (2016). CrossRefGoogle Scholar
  12. 12.
    Hassan, M.; Reddy, K.R.; Haque, E.; Minett, A.I.; Gomes, V.G.: High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013). CrossRefGoogle Scholar
  13. 13.
    Reddy, K.R.; Jeong, H.M.; Lee, Y.; Raghu, A.V.: Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J. Polym. Sci. Part A Polym. Chem. 48, 1477–1484 (2010). CrossRefGoogle Scholar
  14. 14.
    Kim, H.; Abdala, A.A.; MacOsko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010). CrossRefGoogle Scholar
  15. 15.
    Shehzad, F.; Thomas, S.P.; Al-Harthi, M.A.: Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization. Thermochim. Acta. 589, 226–234 (2014). CrossRefGoogle Scholar
  16. 16.
    Son, D.R.; Raghu, A.V.; Reddy, K.R.; Jeong, H.M.: Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55, 1099–1110 (2016). CrossRefGoogle Scholar
  17. 17.
    Han, S.J.; Lee, H.-I.; Jeong, H.M.; Kim, B.K.; Raghu, A.V.; Reddy, K.R.: Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B 53, 1193–1204 (2014). CrossRefGoogle Scholar
  18. 18.
    Costa, F.R.; Saphiannikova, M.; Wagenknecht, U.; Heinrich, G.: Layered double hydroxide based polymer nanocomposites. Adv. Polym. Sci. 210, 101–168 (2008). CrossRefGoogle Scholar
  19. 19.
    Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C.A.; O’Hare, D.: Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2, 10996–11016 (2014). CrossRefGoogle Scholar
  20. 20.
    Matusinovic, Z.; Wilkie, C.a: Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J. Mater. Chem. 22, 18701 (2012). CrossRefGoogle Scholar
  21. 21.
    Pradhan, B.; Srivastava, S.K.; Bhowmick, A.K.; Saxena, A.: Effect of bilayered stearate ion-modified Mg–Al layered double hydroxide on the thermal and mechanical properties of silicone rubber nanocomposites. Polym. Int. 61, 458–465 (2012). CrossRefGoogle Scholar
  22. 22.
    Mallakpour, S.; Dinari, M.: Hybrids of Mg–Al-layered double hydroxide and multiwalled carbon nanotube as a reinforcing filler in the l-phenylalanine-based polymer nanocomposites. J. Therm. Anal. Calorim. 119, 1905–1912 (2015). CrossRefGoogle Scholar
  23. 23.
    Cao, Y.; Li, G.; Li, X.: Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem. Eng. J. 292, 207–223 (2016). CrossRefGoogle Scholar
  24. 24.
    Zhao, M.Q.; Zhang, Q.; Huang, J.Q.; Wei, F.: Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22, 675–694 (2012). CrossRefGoogle Scholar
  25. 25.
    Daud, M.; Kamal, M.S.; Shehzad, F.; Al-Harthi, M.A.: Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104, 241–252 (2016). CrossRefGoogle Scholar
  26. 26.
    Yuan, B.; Bao, C.; Qian, X.; Jiang, S.; Wen, P.; Xing, W.; Song, L.; Liew, K.M.; Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143–1149 (2014). CrossRefGoogle Scholar
  27. 27.
    Daud, M.; Shehzad, F.; Al-Harthi, M.A.: Crystallization behaviour and lamellar thickness distribution of metallocene-catalyzed polymer: effect of 1-alkene comonomer and branch length. Can. J. Chem. Eng. 95, 491–499 (2017). CrossRefGoogle Scholar
  28. 28.
    Chum, P.S.; Swogger, K.W.: Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog. Polym. Sci. 33, 797–819 (2008). CrossRefGoogle Scholar
  29. 29.
    Harini, S.T.; Padmavathi, S.; Satish, A.; Raj, B.: Food compatibility and degradation properties of pro-oxidant-loaded LLDPE film. J. Appl. Polym. Sci. 131, 1–8 (2014). CrossRefGoogle Scholar
  30. 30.
    Stürzel, M.; Kempe, F.; Thomann, Y.; Mark, S.; Enders, M.; Mülhaupt, R.: Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules 45, 6878–6887 (2012). CrossRefGoogle Scholar
  31. 31.
    Shehzad, F.; Daud, M.; Al-Harthi, M.A.: Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J. Therm. Anal. Calorim. 123, 1501–1511 (2016). CrossRefGoogle Scholar
  32. 32.
    Park, S.; Yoon, S.W.; Lee, K.B.; Kim, D.J.; Jung, Y.H.; Do, Y.; Paik, H.J.; Choi, I.S.: Carbon nanotubes as a ligand in Cp\(_2\)ZrCl\(_2\)-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006). CrossRefGoogle Scholar
  33. 33.
    Crepaldi, E.L.; Pavan, P.C.; Valim, J.B.: Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. J. Braz. Chem. Soc. 11, 64–70 (2000). CrossRefGoogle Scholar
  34. 34.
    Daud, M.; Shehzad, F.; Al-Harthi, M.A.: Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym. Bull. 72, 1233–1245 (2015). CrossRefGoogle Scholar
  35. 35.
    ASTM D5017-96(2009)e1, Standard Test Method for Determination of Linear Low Density Polyethylene (LLDPE) Composition by Carbon-13 Nuclear Magnetic Resonance. ASTM Int. West Conshohocken, PA, 2003 (2009)Google Scholar
  36. 36.
    Roy, S.; Srivastava, S.K.; Pionteck, J.; Mittal, V.: Mechanically and thermally enhanced multiwalled carbon nanotube-graphene hybrid filled thermoplastic polyurethane nanocomposites. Macromol. Mater. Eng. 300, 346–357 (2015). CrossRefGoogle Scholar
  37. 37.
    Rives, V.: Characterisation of layered double hydroxides and their decomposition products. Mater. Chem. Phys. 75, 19–25 (2002). CrossRefGoogle Scholar
  38. 38.
    Roy, S.; Srivastava, S.K.; Pionteck, J.; Mittal, V.: Assembly of layered double hydroxide on multi-walled carbon nanotubes as reinforcing hybrid nanofiller in thermoplastic polyurethane/nitrile butadiene rubber blends. Polym. Int. 65, 93–101 (2016). CrossRefGoogle Scholar
  39. 39.
    Álvarez, M.G.; Tichit, D.; Medina, F.; Llorca, J.: Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts. Appl. Surf. Sci. (2016). CrossRefGoogle Scholar
  40. 40.
    Ma, R.; Liu, X.; Liang, J.; Bando, Y.; Sasaki, T.: Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26, 4173–4178 (2014). CrossRefGoogle Scholar
  41. 41.
    Ma, W.; Ma, R.; Wang, C.; Liang, J.; Liu, X.; Zhou, K.; Sasaki, T.: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9, 1977–1984 (2015). CrossRefGoogle Scholar
  42. 42.
    Tang, S.; Lee, H.K.: Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal. Chem. 85, 7426–7433 (2013). CrossRefGoogle Scholar
  43. 43.
    Wang, Z.; Wang, X.; Xie, G.; Li, G.; Zhang, Z.: Preparation and characterization of polyethylene/TiO\(_2\) nanocomposites. Compos. Interfaces 13, 623–632 (2006). CrossRefGoogle Scholar
  44. 44.
    Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). CrossRefGoogle Scholar
  45. 45.
    Buffet, J.-C.; Byles, C.F.H.; Felton, R.; Chen, C.; O’Hare, D.: Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation. Chem. Commun. 52, 4076–4079 (2016). CrossRefGoogle Scholar
  46. 46.
    Buffet, J.-C.; Turner, Z.R.; Cooper, R.T.; O’Hare, D.: Ethylene polymerisation using solid catalysts based on layered double hydroxides. Polym. Chem. 6, 2493–2503 (2015). CrossRefGoogle Scholar
  47. 47.
    Choi, B.; Lee, J.; Lee, S.; Ko, J.-H.; Lee, K.-S.; Oh, J.; Han, J.; Kim, Y.-H.; Choi, I.S.; Park, S.: Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013). CrossRefGoogle Scholar
  48. 48.
    Lee, J.S.; Ko, Y.S.: Synthesis of petaloid graphene/polyethylene composite nanosheet produced by ethylene polymerization with metallocene catalyst adsorbed on multilayer graphene. Catal. Today 232, 82–88 (2014). CrossRefGoogle Scholar
  49. 49.
    Zhang, H.-X.; Ko, E.-B.; Park, J.-H.; Moon, Y.-K.; Zhang, X.-Q.; Yoon, K.-B.: Fabrication of polyethylene/graphene nanocomposites through in situ polymerization with a spherical graphene/MgCl2-supported Ziegler–Natta catalyst. Compos. Sci. Technol. 136, 61–66 (2016). CrossRefGoogle Scholar
  50. 50.
    Gao, Y.; Wang, Q.; Wang, J.; Huang, L.; Yan, X.; Zhang, X.; He, Q.; Xing, Z.; Guo, Z.: Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl. Mater. Interfaces. 6, 5094–5104 (2014). CrossRefGoogle Scholar
  51. 51.
    Costa, F.R.; Abdel-Goad, M.; Wagenknecht, U.; Heinrich, G.: Nanocomposites based on polyethylene and Mg–Al layered double hydroxide. I. Synthesis and characterization. Polymer (Guildf) 46, 4447–4453 (2005). CrossRefGoogle Scholar
  52. 52.
    Du, L.; Qu, B.: Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites. J. Mater. Chem. 16, 1549 (2006). CrossRefGoogle Scholar
  53. 53.
    Huang, G.; Chen, S.; Song, P.; Lu, P.; Wu, C.; Liang, H.: Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl. Clay Sci. 88–89, 78–85 (2014). CrossRefGoogle Scholar
  54. 54.
    Lee, Y.R.; Kim, S.C.; Lee, H.; Jeong, H.M.; Raghu, A.V.; Reddy, K.R.; Kim, B.K.: Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011). CrossRefGoogle Scholar
  55. 55.
    Shi, Y.; Chen, F.; Yang, J.; Zhong, M.: Crystallinity and thermal stability of LDH/polypropylene nanocomposites. Appl. Clay Sci. 50, 87–91 (2010). CrossRefGoogle Scholar
  56. 56.
    Ardanuy, M.; Velasco, J.I.: Mg–Al layered double hydroxide nanoparticles. Appl. Clay Sci. 51, 341–347 (2011). CrossRefGoogle Scholar
  57. 57.
    Costa, F.R.; Wagenknecht, U.; Heinrich, G.: LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym. Degrad. Stab. 92, 1813–1823 (2007). CrossRefGoogle Scholar
  58. 58.
    Majoni, S.: Thermal and flammability study of polystyrene composites containing magnesium-aluminum layered double hydroxide (MgAl-C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 120, 1435–1443 (2015). CrossRefGoogle Scholar
  59. 59.
    Liu, J.; Tao, Y.; Zhou, K.; Shi, Y.; Feng, X.; Jie, G.; Yuen, R.K.K.; Hu, Y.: The influence of typical layered inorganic compounds on the improved thermal stability and fire resistance properties of polystyrene nanocomposites. Polym. Compos. 38, E320–E330 (2017). CrossRefGoogle Scholar
  60. 60.
    Chen, W.; Qu, B.: Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem. Mater. 15, 3208–3213 (2003). CrossRefGoogle Scholar
  61. 61.
    Du, L.; Qu, B.; Meng, Y.; Zhu, Q.: Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 66, 913–918 (2006). CrossRefGoogle Scholar
  62. 62.
    Du, L.; Qu, B.; Zhang, M.: Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation. Polym. Degrad. Stab. 92, 497–502 (2007). CrossRefGoogle Scholar
  63. 63.
    Peterson, J.D.; Vyazovkin, S.; Wight, C.A.: Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202, 775–784 (2001).;2-G CrossRefGoogle Scholar
  64. 64.
    Friedman, H.L.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183–195 (2007). CrossRefGoogle Scholar
  65. 65.
    Zubair, M.; Shehzad, F.; Al-Harthi, M.A.: Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate). Thermochim. Acta. 633, 48–55 (2016). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Muhammad Daud
    • 1
    • 2
  • Farrukh Shehzad
    • 1
  • Mamdouh A. Al-Harthi
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Chemical EngineeringUniversity of Engineering and TechnologyPeshawarPakistan
  3. 3.Center for Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations