Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 179–187 | Cite as

Voltammetric Detection of Hg(II) in Real Wastewater Using Red Alga Modified Carbon Paste Electrode: Mechanism Insight

  • Maria ZaibEmail author
  • Muhammad Makshoof Athar
Research Article - Chemistry
  • 14 Downloads

Abstract

Mercury is one of the persistent environmental pollutants, and its detection has gained massive attention these days. The study exploited the ability of unicellular red alga Porphyridium cruentum-based carbon paste electrode to detect Hg(II) in wastewater. Hg(II) is initially deposited as Hg\(^{0}\) on the surface of electrode by applying deposition potential of − 0.5 V, which afterward stripped off using anodic scan between − 0.5 and \(+\) 0.5 V. Experimental parameters like biomass-to-carbon ratio, deposition potential, accumulation time, pH of accumulating medium were optimized. Best response of P. cruentum-based electrode for Hg(II) was obtained using 10% biomass at pH 7. Carboxylate and phosphate functional moieties on the surface of modified electrode are mainly involved in accumulation and stripping procedure of Hg(II). The limit of detection for Hg(II) by the proposed electrochemical sensor was found to be 0.95 \(\upmu \)\(\hbox {L}^{-1}\). The efficiency of modified electrode was studied in the presence of several interfering ions. In the end, intraday and interday precision studies were carried out for real wastewater samples, and further, these results were compared to a standard analytical method for evaluating efficacious working of modified electrode.

Keywords

Carbon paste electrode Voltammetry Chloralkali industry Red alga 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindqvist, O.; Johansson, K.; Bringmark, L.; Timm, B.; Aastrup, M.; Andersson, A.; Meili, M.: Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water Air Soil Pollut. 56, 11–13 (1991)Google Scholar
  2. 2.
    Leopolda, K.; Foulkesb, M.; Worsfold, P.: Methods for the determination and speciation of mercury in natural waters—a review. Anal. Chim. Acta 663, 127–138 (2010)CrossRefGoogle Scholar
  3. 3.
    Wang, Q.; Kim, D.; Dionysiou, D.D.; Sorial, G.A.; Timberlake, D.: Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ. Pollut. 131(2), 323–336 (2004)CrossRefGoogle Scholar
  4. 4.
    Loux, N.T.: An assessment of mercury-species-dependent binding with natural organic carbon. Chem. Spec. Bioavailab. 10(4), 127–136 (1998)CrossRefGoogle Scholar
  5. 5.
    Graeme, K.A.; Pollack, C.V.: Heavy metal toxicity, part I: arsenic and mercury. J. Emerg. Med. 16(1), 45–56 (1998)CrossRefGoogle Scholar
  6. 6.
    Nriagu, J.O.: A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49 (1989)CrossRefGoogle Scholar
  7. 7.
    Winship, K.: Toxicity of inorganic arsenic salts. Adverse Drug React. Acute Poisoning Rev. 3(3), 129–160 (1983)Google Scholar
  8. 8.
    Ministry of Environment.: National Mercury Waste Management Plan of Pakistan. Government of Pakistan in collaboration with United Nations Environment program (UNEP) Chemicals Branch, Geneva (2010)Google Scholar
  9. 9.
    Abbas, N.; Chaudary, M.N.; Raza, A.; Mehmood, A.: Toxicity of mercury in different samples (water and soils) and its exposure in Pakistan. Sci. Int. 24, 421–429 (2012)Google Scholar
  10. 10.
    Bhanger, M.I.; Memon, S.Q.: Water research activities in Pakistan. In: Proceedings of the 1st Technical Meeting of Muslim Water Researchers Cooperation (MUWAREC) December, Malaysia (1998)Google Scholar
  11. 11.
    Bojdi, M.K.; Behbahani, M.; Sahragard, A.; Amin, B.G.; Fakhari, A.; Bagheri, A.: A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions. Electrochim. Acta 149, 108–116 (2014)CrossRefGoogle Scholar
  12. 12.
    Bojdi, M.K.; Mashhadizadeh, M.H.; Behbahani, M.; Farahani, A.; Davarani, S.S.H.; Bagheri, A.: Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes. Electrochim. Acta 136, 59–65 (2014)CrossRefGoogle Scholar
  13. 13.
    Hosseini, H.; Behbahani, M.; Mahyari, M.; Kazerooni, H.; Bagheri, A.; Shaabani, A.: Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide. Biosens. Bioelectron. 59, 412–417 (2014)CrossRefGoogle Scholar
  14. 14.
    Bojdi, M.K.; Behbahani, M.; Najafi, M.; Bagheri, A.; Omidi, F.; Sara Salimi, S.: Selective and sensitive determination of uranyl ions in complex matrices by ion imprinted polymers-based electrochemical sensor. Electroanalysis 27, 2458–2467 (2015)CrossRefGoogle Scholar
  15. 15.
    Bojdi, M.K.; Behbahani, M.; Mashhadizadeh, M.H.; Akbar Bagheri, A.; Davarani, S.S.H.; Farahani, A.: Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. Mater. Sci. Eng. C 48, 213–219 (2015)CrossRefGoogle Scholar
  16. 16.
    Bojdi, M.K.; Behbahani, M.; Hesam, G.; Mashhadizadeh, M.H.: Application of magnetic lamotrigine-imprinted polymer nanoparticles as an electrochemical sensor for trace determination of lamotrigine in biological samples. RSC Adv. 6, 32374–32380 (2016)CrossRefGoogle Scholar
  17. 17.
    Bojdi, M.K.; Behbahani, M.; Omidi, F.; Hesam, G.: Application of a novel electrochemical sensor based on modified siliceous mesocellular foam for electrochemical detection of ultra-trace amounts of mercury ions. New J. Chem. 40, 4519–4527 (2016)CrossRefGoogle Scholar
  18. 18.
    Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A.: Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater. 318, 117–124 (2016)CrossRefGoogle Scholar
  19. 19.
    Zarezade, V.; Aliakbari, A.; Eshaghi, M.; Amini, M.M.; Behbahani, M.; Omidi, F.; Hesam, G.: Application of a new nanoporous sorbent for extraction and pre-concentration of lead and copper ions. Int. J. Environ. Anal. Chem. 97, 383–397 (2017)CrossRefGoogle Scholar
  20. 20.
    Svobodova, E.; Baldrianov, A.L.; Hocevar, S.B.; Svancara, I.: Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode. Int. J. Electrochem. Sci. 7, 197–210 (2012)Google Scholar
  21. 21.
    Wang, J.; Chen, C.: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226 (2009)CrossRefGoogle Scholar
  22. 22.
    Zaib, M.; Saeed, A.; Hussain, I.; Athar, M.M.; Iqbal, M.: Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor. Biosens. Bioelectron. 62, 242–248 (2014)CrossRefGoogle Scholar
  23. 23.
    Martín-Yerga, D.; González-García, M.B.; Costa-García, A.: Electrochemical determination of mercury: a review. Talanta 116, 1091–1104 (2013)CrossRefGoogle Scholar
  24. 24.
    Suguihiro, T.M.; de Oliveira, P.R.; de Rezende, E.I.P.; Mangrich, A.S.; Marcolina Jr., L.H.; Bergamini, M.F.: An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresour. Technol. 143, 40–45 (2013)CrossRefGoogle Scholar
  25. 25.
    Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J.: Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41, 3210–3244 (2012)CrossRefGoogle Scholar
  26. 26.
    Khan, A.; Asiri, A.M.; Khan, A.A.P.; Rub, M.A.; Azum, N.; Rahman, M.M.; Khan, S.B.; Alamry, K.A.; Ghani, S.A.: Sol–gel synthesis and characterization of conducting polythiophene/tin phosphate nano tetrapod composite cation-exchanger and its application as Hg(II) selective membrane electrode. J. Sol-Gel Sci. Technol. 65, 160–169 (2013)CrossRefGoogle Scholar
  27. 27.
    Yan, Z.; Yuen, M.-F.; Hu, L.; Suna, P.; Lee, C.-S.: Advances for the colorimetric detection of \(\text{ Hg }^{2+}\) in aqueous solution. RSC Adv. 4, 48373–48388 (2014)CrossRefGoogle Scholar
  28. 28.
    Chen, G.; Guo, Z.; Zeng, G.; Tang, L.: Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 140, 5400–5443 (2015)CrossRefGoogle Scholar
  29. 29.
    Saleem, M.; Lee, K.L.: Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 5, 72150–72287 (2015)CrossRefGoogle Scholar
  30. 30.
    Arshad, M.N.; Rahman, M.M.; Asiri, A.M.; Sobahi, T.R.; Yu, S.-H.: Development of \(\text{ Hg }^{2+}\) sensor based on N\(^{\prime }\)-[1-(pyridin-2-yl)ethylidene]benzenesulfono-hydrazide (PEBSH) fabricated silver electrode for environmental remediation. RSC Adv. 5, 81275–81281 (2015)CrossRefGoogle Scholar
  31. 31.
    Xu, X.; Li, Y.-F.; Zhao, J.; Li, Y.; Lin, J.; Li, B.; Gao, Y.; Chen, C.: Nanomaterial-based approaches for the detection and speciation of mercury. Analyst 140, 7841–7853 (2015)CrossRefGoogle Scholar
  32. 32.
    Awual, M.R.; Hasan, M.M.; Eldesoky, E.G.; Khaleque, M.A.; Rahman, M.M.; Naushad, M.: Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem. Eng. J. 290, 243–251 (2016)Google Scholar
  33. 33.
    Hussain, M.M.; Rahman, M.M.; Arshad, M.N.; Asiri, A.M.: \(\text{ Hg }^{2+}\) sensor development based on (E)-N\(^{\prime }\)-nitrobenzylidene-benzenesulfonohydrazide (NBBSH) derivatives fabricated on a glassy carbon electrode with a nafion matrix. ACS Omega 2, 420–431 (2017)CrossRefGoogle Scholar
  34. 34.
    Chen, Z.; Meng, G.; Tang, H.; Ye, Y.; Sun, R.; Chen, M.; Wang, K.-M.: A novel cationic iridium(III) complex with a thiorhodamine-based auxiliary ligand: application for luminescent and colorimetric detection of \(\text{ Hg }^{2+}\) in an aqueous solution. New J. Chem. 41, 8312–8319 (2017)CrossRefGoogle Scholar
  35. 35.
    Razaghi, A.; Godhe, A.; Albers, E.: Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sci. 9(2), 156–162 (2014)Google Scholar
  36. 36.
    Jones, R.F.; Speer, H.L.; Kury, W.: Studies on the growth of the red alga Porphyridium cruentum. Physiol. Plant. 16(3), 636–643 (1963)CrossRefGoogle Scholar
  37. 37.
    Uney, K.; Altan, F.; Elmas, M.: Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its application to pharmacokinetic studies. Antimicrob. Agents Chemother. 55(2), 854–859 (2011)CrossRefGoogle Scholar
  38. 38.
    El Aroui, F.; Lahrich, S.; Farahi, A.; Achak, M.; El Gaini, L.; Manoun, B.; Bakasse, M.; Bouzidi, A.; El Mhammedi, M.A.: Electrochemical determination of mercury(II) in ambient water at palladium oxide/graphite composite electrodes. J. Taiwan Inst. Chem. Eng. 45, 2725–2732 (2014)CrossRefGoogle Scholar
  39. 39.
    Jahandari, S.; Taher, M.A.; Fazelirad, H.; Sheikhshoai, I.: Anodic stripping voltammetry of silver(I) using a carbon paste electrode modified with multi-walled carbon nanotubes. Microchim. Acta 180(5–6), 347–354 (2013)CrossRefGoogle Scholar
  40. 40.
    Al-Ghamdi, A.F.; Hefnawy, M.M.; Almaged, A.; Belal, F.F.: Development of square-wave adsorptive stripping voltammetric method for determination of acebutolol in pharmaceutical formulations and biological fluids. Chem. Cent. J. (2012). http://journal.chemistrycentral.com/content/6/1/15
  41. 41.
    Ismaiel, A.A.; Aroua, M.K.; Yusoff, R.: Potentiometric determination of trace amounts of mercury(II) in water sample using a new modified palm shell activated carbon paste electrode based on kryptofix 5. Am. J. Anal. Chem. 3(12), 859–865 (2012)CrossRefGoogle Scholar
  42. 42.
    Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z.: Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater. 183(1), 402–409 (2010)CrossRefGoogle Scholar
  43. 43.
    Kuyucak, N.; Volesky, B.: Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 3, 809–814 (1989)CrossRefGoogle Scholar
  44. 44.
    Chojnacki, K.; Chojnacki, A.; Gorecka, H.: Biosorption of \(\text{ Cr }^{3+}\), \(\text{ Cd }^{2+}\) and \(\text{ Cu }^{2+}\) ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59, 75–84 (2005)CrossRefGoogle Scholar
  45. 45.
    Monteiro, C.M.; Marques, A.P.; Castro, P.M.; Xavier, M.F.: Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20, 629–641 (2009)CrossRefGoogle Scholar
  46. 46.
    Das, S.K.; Das, A.R.; Guha, A.K.: A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ. Sci. Technol. 41(24), 8281–8287 (2007)CrossRefGoogle Scholar
  47. 47.
    Tan, C.W.; Tan, K.H.; Ong, Y.T.; Mohamed, A.R.; Zein, S.H.S.; Tan, S.H.: Environmental chemistry for a sustainable world. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds.) Nanotechnology and Health Risks, pp. 3–46. Springer, New York (2011)Google Scholar
  48. 48.
    Devnani, H.; Satsangee, S.P.: Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes. Environ. Monit. Assess. 185(11), 9333–9342 (2013)CrossRefGoogle Scholar
  49. 49.
    Rajawat, D.S.; Kumar, N.; Satsangee, S.P.: Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder. J. Anal. Sci. Technol. 5(1), 1–8 (2014)CrossRefGoogle Scholar
  50. 50.
    Inbaraj, B.S.; Wang, J.; Lu, J.; Siao, F.; Chen, B.: Adsorption of toxic mercury(II) by an extracellular biopolymer poly (\(\gamma \)-glutamic acid). Bioresour. Technol. 100(1), 200–207 (2009)CrossRefGoogle Scholar
  51. 51.
    Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of ChemistryGovernment College Women UniversitySialkotPakistan
  2. 2.Institute of ChemistryUniversity of the PunjabLahorePakistan

Personalised recommendations