Suboptimal Output Tracking and Regulation of a Class of Nonlinear Systems

Research Article - Electrical Engineering
  • 26 Downloads

Abstract

This paper proposes an approximate optimal approach for output tracking and regulation of a class of nonlinear systems. This class includes systems which are decomposable into a linear part and a nonlinear part. It is shown that the Hamilton–Jacobi–Bellman equation associated with optimal control of such systems, under an assumption on form of its solution, can be approximated as an algebraic equation. Decomposition of this algebraic equation into a linear part and a nonlinear part and their subsequent solutions together form an approximate value function. This value function is found to be nearly optimal locally around the origin. Thus, a locally stabilizing controller with the proposed value function as feedback gain is proposed. This approach achieves output tracking and regulation by converting these into a stabilization problem through internal model principle resulting in a near-optimal tracking and regulation. This proposed algebraic equation can be used for estimation too, i.e., it plays the same role in nonlinear settings as that played by an algebraic Riccati equation in linear quadratic regulation and linear quadratic estimation. Finally, the proposed approach can compensate integral windup effects due to actuator saturation through modification of filtering characteristics of internal model. Simulation results for an undamped spring-mass system are given for efficacy of the approach.

Keywords

Nonlinear tracking Nonlinear regulation Nonlinear estimation Optimal control Internal model principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Francis, B.A.; Wonham, W.M.: Paper: The internal model principle of control theory. Automatica 12(5), 457–465 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Isidori, A.; Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35(2), 131–140 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Isidori, A.; Marconi, L.; Serrani, A.: Robust Autonomous Guidance: An Internal Model Approach. Springer, Berlin (2012)MATHGoogle Scholar
  4. 4.
    Cheng, D.: Nonlinear output regulation theory and applications, jie huang, siam, philadelphia, 2004, 318pp. isbn 0-89871-562-8. Int. J. Robust Nonlinear Control 16(8), 413–415 (2006)CrossRefGoogle Scholar
  5. 5.
    Pavlov, A.V.; van de Wouw, N.; Nijmeijer, H.: Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach. Springer, Berlin (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Byrnes, C.I.: On the riccati partial differential equation for nonlinear bolza and lagrange problems. J. Math. Syst. Estim. Control 8, 1–54 (1998)MathSciNetMATHGoogle Scholar
  7. 7.
    Freeman, R.A.; Kokotovic, P.V.: Inverse optimality in robust stabilization. SIAM J. Control Optim. 34(4), 1365–1391 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Navasca, C.; Krener, A.J.: Patchy solutions of hamilton-jacobi-bellman partial differential equations. In: Modeling, estimation and control, pp. 251–270. Springer (2007)Google Scholar
  9. 9.
    Sassano, M.; Astolfi, A.: Dynamic approximate solutions of the hj inequality and of the hjb equation for input-affine nonlinear systems. IEEE Trans. Autom. Control 57(10), 2490–2503 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cloutier, J.R; DSouza, C.N; Mracek, C.P: Nonlinear regulation and nonlinear h control via the state-dependent riccati equation technique: Part 1, theory. In: Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace, pp. 117–130. Embry-Riddle Aeronautical Univ. Press Daytona Beach, FL (1996)Google Scholar
  11. 11.
    Rubio, J.J.: Stable and optimal controls of a proton exchange membrane fuel cell. Int. J. Control 87(11), 2338–2347 (2014)MATHGoogle Scholar
  12. 12.
    Rubio, J.J.; Bravo, A.G.: Optimal control of a pem fuel cell for the inputs minimization. Math. Probl. Eng. 2014, 7 (2014)Google Scholar
  13. 13.
    Torres, C.; Rubio, J.J.; Aguilar-Ibánez, C.F.; Pérez-Cruz, J.: Stable optimal control applied to a cylindrical robotic arm. Neural Comput. Appl. 24(3–4), 937–944 (2014)CrossRefGoogle Scholar
  14. 14.
    Freeman, R.; Kokotovic, P.V.: Robust Nonlinear Control Design: State-space and Lyapunov Techniques. Springer, Berlin (2008)MATHGoogle Scholar
  15. 15.
    Krstic, M.; Tsiotras, P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Autom. Control 44(5), 1042–1049 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Memon, A.Y.: Optimal output regulation of minimum phase nonlinear systems. In: Control (CONTROL), 2012 UKACC International Conference on, pp. 490–495. IEEE (2012)Google Scholar
  17. 17.
    Batmani, Y.; Davoodi, M.; Meskin, N.: Nonlinear suboptimal tracking controller design using state-dependent riccati equation technique. IEEE Trans. Control Syst. Technol. PP(99), 1–7 (2016)Google Scholar
  18. 18.
    Nekoo, S.R.; Geranmehr, B.: Nonlinear observer-based optimal control using the state-dependent riccati equation for a class of non-affine control systems. J. Control Eng. Appl. Inform. 16(2), 5–13 (2014)Google Scholar
  19. 19.
    Cimen, T.: State-dependent riccati equation (sdre) control: a survey. In: Proceedings of the 17th World Congress of the International Federation of Automatic Control (IFAC), Seoul, Korea, July, pp. 6–11 (2008)Google Scholar
  20. 20.
    Zaffar, S.; Memon, A.Y.: Robust and optimal stabilization of uncertain linear systems using lqr methods. In: 2014 UKACC International Conference on Control (CONTROL)Google Scholar
  21. 21.
    Quan, Q.; Cai, K.-Y.; Lin, H.: Additive-state-decomposition-based tracking control framework for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances. Int. J. Robust Nonlinear Control 25(2), 163–178 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mracek, C.P.; Clontier, J.R.; D’Souza, C.A.: A new technique for nonlinear estimation. In: Proceedings of the 1996 IEEE International Conference onControl Applications, 1996, pp 338–343. IEEE (1996)Google Scholar
  23. 23.
    Khalil, H.K.: Noninear Systems. Prentice-Hall, New Jersey (1996)Google Scholar
  24. 24.
    Banks, H.T.; Lewis, B.M.; Tran, H.T.: Nonlinear feedback controllers and compensators: a state-dependent riccati equation approach. Comput. Optim. Appl. 37(2), 177–218 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Higham, N.J.; Kim, H.M.: Numerical analysis of a quadratic matrix equation. IMA J. Numer. Anal. 20, 499–519 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zwillinger, Daniel: Handbook of Differential Equations, vol. 1. Gulf Professional Publishing, Houston (1998)MATHGoogle Scholar
  27. 27.
    Shamma, J.S.: Control of Linear Parameter Varying Systems with Applications. Springer, Berlin (2012)Google Scholar
  28. 28.
    Khalil, H.K.: Nonlinear systems. Pearson Education. Prentice Hall (2002)Google Scholar
  29. 29.
    Rubio, J.J.: Hybrid controller with observer for the estimation and rejection of disturbances. ISA Trans. 65, 445–455 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rubio, J.J.; Ochoa, G.; Balcazar, R.; Pacheco, J.: Uniform stable observer for the disturbance estimation in two renewable energy systems. ISA Trans. 58, 155–164 (2015)CrossRefGoogle Scholar
  31. 31.
    Bemporad, A.; Teel, A.R.; Zaccarian, L.: Anti-windup synthesis via sampled-data piecewise affine optimal control. Automatica 40(4), 549–562 (2004)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Ogata, K.: Modern Control Engineering, 4th edn. Prentice Hall PTR, Upper Saddle River (2001)MATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.National University of Sciences and TechnologyKarachiPakistan

Personalised recommendations