Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6033–6055 | Cite as

A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method

  • Haluk Korucu
  • Barış Şimşek
  • Ahmet Yartaşı
Research Article - Chemical Engineering

Abstract

In nanomanufacturing industry, designs of experimental methods are becoming more important to explore and understand the relationships between the variables and properties of the materials. In this study, TOPSIS-based Taguchi optimization method was performed to analyze and optimize Hummers method-based graphene oxide synthesis process. For this purpose, the main responses were selected as the ID/IG, I2D and I (\(\hbox {D}{+}\hbox {D}^{\prime }\)) values that represent graphene defectiveness, surface roughness representing surface morphology, crystallite size providing information about number of layers and carbon to oxygen ratio representing oxidation or reduction degree in the synthesis of graphene oxide (GO) obtained by Hummers method. The results showed that the centrifuge step which was causing the highest variation in responses was determined to be the most important factor of GO synthesis process. The improvement in the GO quality characteristics between the estimate and the optimal conditions was calculated for the ID/IG values, surface roughness, the crystallite size and the carbon to oxygen ratio as 7.05, 40.10, 5.38 and 15.19%, respectively. The improvement in the quality characteristic between the estimate and the optimal conditions was calculated for rGO as follows: the ID/IG values: 1.51%, the surface roughness: 57.49%, the crystallite size: 48.05% and the carbon to oxygen ratio: 101.82%.

Keywords

Graphene oxide powder Hummers method TOPSIS-based Taguchi optimization Optimal mixture ratio Product design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geim, A.K.; Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Castro, K.L.S.; Curti, R.V.; Araujo, J.R.; et al.: Calcium incorporation in graphene oxide particles: a morphological, chemical, electrical, and thermal study. Thin Solid Films 610, 10–18 (2016)CrossRefGoogle Scholar
  3. 3.
    Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.M.; et al.: Synthesis of graphene. Int. Nano Lett. 6(2), 65–83 (2016)CrossRefGoogle Scholar
  4. 4.
    Ray, S.C.: Chapter 2—application and uses of graphene oxide and reduced graphene oxide. In: Ray, S.C. (ed.) Applications of Graphene and Graphene-Oxide Based Nanomaterials, pp. 39–55. William Andrew Publishing, Oxford (2015)CrossRefGoogle Scholar
  5. 5.
    Hu, X.; Yu, Y.; Wang, Y.; et al.: Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Appl. Surf. Sci. 329, 83–86 (2015)CrossRefGoogle Scholar
  6. 6.
    Guerrero-Contreras, J.; Caballero-Briones, F.: Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015)CrossRefGoogle Scholar
  7. 7.
    Karteri, İ.; Karataş, Ş.; Al-Ghamdi, A.A.; et al.: The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Metals 199, 241–245 (2015)CrossRefGoogle Scholar
  8. 8.
    Karteri, İ.; Özerli, H.; Karataş, Ş.: The effect of thermal behavior on performance of the low-cost reduced graphene oxide battery for novel battery technology. Mater. Today Proc. 3(5), 1235–1241 (2016)CrossRefGoogle Scholar
  9. 9.
    Hu, X.; Yu, Y.; Wang, Y.; et al.: Highly transparent superhydrophilic graphene oxide coating for antifogging. Mater. Lett. 182, 372–375 (2016)CrossRefGoogle Scholar
  10. 10.
    Xu, J.; Fan, X.; Xia, Q.; et al.: A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn\(_{3}\)O\(_{4}\) nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)CrossRefGoogle Scholar
  11. 11.
    Nagavolu, C.; Susmitha, K.; Raghavender, M.; et al.: Pt-free spray coated reduced graphene oxide counter electrodes for dye sensitized solar cells. Solar Energy 137, 143–147 (2016)CrossRefGoogle Scholar
  12. 12.
    Belekoukia, M.; Ploumistos, A.; Sygellou, L.; et al.: Co-N doped reduced graphene oxide used as efficient electrocatalyst for dye-sensitized solar cells. Solar Energy Mater. Solar Cells 157, 591–598 (2016)CrossRefGoogle Scholar
  13. 13.
    Fan, L.; Ge, H.; Zou, S.; et al.: Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int. J. Biol. Macromol. 93(Part A), 582–590 (2016)CrossRefGoogle Scholar
  14. 14.
    Liu, Y.; Zhang, Y.; Duan, L.; et al.: Polystyrene/graphene oxide nanocomposites synthesized via Pickering polymerization. Prog. Org. Coat. 99, 23–31 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y.; Lu, J.; Liu, X.; et al.: Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J. Colloid Interface Sci. 480, 1–8 (2016)CrossRefGoogle Scholar
  16. 16.
    Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; et al.: Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165(Part 1), 90–96 (2016)CrossRefGoogle Scholar
  17. 17.
    Yoo, S.; Lee, J.; Kim, J.M.; et al.: Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. J. Electroanal. Chem. 780, 19–25 (2016)CrossRefGoogle Scholar
  18. 18.
    Yang, S.; Li, G.; Wang, D.; et al.: Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor. Sensors Actuators B Chem. 238, 588–595 (2017)CrossRefGoogle Scholar
  19. 19.
    Chen, J.; Li, Y.; Huang, L.; et al.: High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826–834 (2015)CrossRefGoogle Scholar
  20. 20.
    Botas, C.; Álvarez, P.; Blanco, P.; et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013)CrossRefGoogle Scholar
  21. 21.
    Frankberg, E.J.; George, L.; Efimov, A.; et al.: Measuring synthesis yield in graphene oxide synthesis by modified Hummers method. Fuller. Nanotubes Carbon Nanostruct. 23(9), 755–759 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, J.; Yao, B.; Li, C.; et al.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRefGoogle Scholar
  23. 23.
    Tuan, T.N.; Chung, S.; Lee, J.K.; et al.: Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide. Curr. Appl. Phys. 15(11), 1397–1401 (2015)CrossRefGoogle Scholar
  24. 24.
    Alazmi, A.; Rasul, S.; Patole, S.P.; et al.: Comparative study of synthesis and reduction methods for graphene oxide. Polyhedron 116, 153–161 (2016)CrossRefGoogle Scholar
  25. 25.
    Lavin-Lopez, MdP; Romero, A.; Garrido, J.; et al.: Influence of different improved Hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Ind. Eng. Chem. Res. 55(50), 12836–12847 (2016)CrossRefGoogle Scholar
  26. 26.
    Niu, Y.; Fang, Q.; Zhang, X.; et al.: Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys. Lett. A 380(38), 3128–3132 (2016)CrossRefGoogle Scholar
  27. 27.
    Mohan, V.B.; Jayaraman, K.; Stamm, M.; et al.: Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films 616, 172–182 (2016)CrossRefGoogle Scholar
  28. 28.
    Khoei, A.; Khorrami, M.: Mechanical properties of graphene oxide: a molecular dynamics study. Fuller. Nanotub. Carbon Nanostruct. 24(9), 594–603 (2016)CrossRefGoogle Scholar
  29. 29.
    Yuangyai, C.; Nembhard, H.B.: Chapter 8—design of experiments: a key to innovation in nanotechnology. In: Ahmed, W, Jackson, M.J. (eds) Emerging Nanotechnologies for Manufacturing, 2nd edn, pp. 230–254. William Andrew Publishing, Boston (2015)CrossRefGoogle Scholar
  30. 30.
    Şimşek, B.; Uygunoğlu, T.: Multi-response optimization of polymer blended concrete: a TOPSIS based Taguchi application. Constr. Build. Mater. 117, 251–262 (2016)CrossRefGoogle Scholar
  31. 31.
    Şimşek, B.; İç, Y.T.; Şimşek, E.H.: A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemom. Intell. Lab. Syst. 125, 18–32 (2013)CrossRefGoogle Scholar
  32. 32.
    Botas, C.; Pérez-Mas, A.M.; Álvarez, P.; et al.: Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon 63, 576–578 (2013)CrossRefGoogle Scholar
  33. 33.
    Poorali, M.-S.; Bagheri-Mohagheghi, M.-M.: Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. J. Mater. Sci. Mater. Electron. 27(1), 260–271 (2016)CrossRefGoogle Scholar
  34. 34.
    Kondratowicz, I.; Żelechowska, K.; Sadowski, W.: Optimization of graphene oxide synthesis and its reduction. In: Fesenko, O.; Yatsenko, L. (eds.) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies: Selected Proceedings of the Second FP7 Conference and the Third International Summer School Nanotechnology: From Fundamental Research to Innovations, 23–30 Aug 2014, Ukraine, Yaremche-Lviv, pp. 467–484. Springer International Publishing, Cham (2015)Google Scholar
  35. 35.
    Yong Jae, K.; Yung Ho, K.; Yun-Hwa, H.; et al.: Optimization of graphene oxide synthesis parameters for improving their after-reduction material performance in functional electrodes. Mater. Res. Express 3(10), 105033 (2016)CrossRefGoogle Scholar
  36. 36.
    Fathy, M.; Gomaa, A.; Taher, F.A.; et al.: Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51(12), 5664–5675 (2016)CrossRefGoogle Scholar
  37. 37.
    Huang, M.-L.; Hung, Y.-H.; Yang, Z.-S.: Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement 94, 284–294 (2016)CrossRefGoogle Scholar
  38. 38.
    Şimşek, B.; Ultav, G.; Korucu, H.; Yartaşi, A.: Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application. Periodica. Polytech. Chem Eng.  https://doi.org/10.3311/PPch.11412 (2018)CrossRefGoogle Scholar
  39. 39.
    Debnath, S.; Reddy, M.M.; Yi, Q.S.: Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement 78, 111–119 (2016)CrossRefGoogle Scholar
  40. 40.
    Bilga, P.S.; Singh, S.; Kumar, R.: Optimization of energy consumption response parameters for turning operation using Taguchi method. J. Clean. Prod. 137, 1406–1417 (2016)CrossRefGoogle Scholar
  41. 41.
    Mitra, A.C.; Jawarkar, M.; Soni, T.; et al.: Implementation of Taguchi method for robust suspension design. Proc. Eng. 144, 77–84 (2016)CrossRefGoogle Scholar
  42. 42.
    Şimşek, B.; İç, Y.T.; Şimşek, E.H.: A RSM-based multi-response optimization application for determining optimal mix proportions of standard ready-mixed concrete. Arab. J. Sci. Eng. 41(4), 1435–1450 (2016)CrossRefGoogle Scholar
  43. 43.
    Cheng, M.; Yang, R.; Zhang, L.; et al.: Restoration of graphene from graphene oxide by defect repair. Carbon 50(7), 2581–2587 (2012)CrossRefGoogle Scholar
  44. 44.
    Shahriary, L.; Athawale, A.A.: Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014)Google Scholar
  45. 45.
    Wahab, H.S.; Ali, S.H.; Hussein, A.M.A.: Synthesis and characterization of graphene by Raman spectroscopy J. Mate. Sci. Appl. 1(3), 130–135 (2015)Google Scholar
  46. 46.
    Seresht, R.J.; Jahanshahi, M.; Rashidi, A.M.; Ghoreyshi A.A.: Synthesis and characterization of thermally-reduced graphene. Iranica. J. Energ. Environ. 4(1): 53–59 (2013)Google Scholar
  47. 47.
    Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; et al.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)CrossRefGoogle Scholar
  48. 48.
    Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; et al.: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)CrossRefGoogle Scholar
  49. 49.
    Rattana, T.; Chaiyakun, S.; Witit-anun, N.; et al.: Preparation and characterization of graphene oxide nanosheets. Proc. Eng. 32, 759–764 (2012)CrossRefGoogle Scholar
  50. 50.
    Bhalothia, S.; Kumar, N.; Das, S.; et al.: Effect of graphene oxide doping on superconducting properties of bulk MgB 2. Supercond. Sci. Technol. 26(9), 095008 (2013)CrossRefGoogle Scholar
  51. 51.
    Muhammad Hafiz, S.; Ritikos, R.; Whitcher, T.J.; et al.: A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors Actuators B Chem. 193, 692–700 (2014)CrossRefGoogle Scholar
  52. 52.
    Tansel İç, Y.: Development of a credit limit allocation model for banks using an integrated Fuzzy TOPSIS and linear programming. Expert Syst. Appl. 39(5), 5309–5316 (2012)CrossRefGoogle Scholar
  53. 53.
    Mahmood, H.; Habib, A.; Mujahid, M.; et al.: Band gap reduction of titania thin films using graphene nanosheets. Mater. Sci. Semicond. Process. 24, 193–199 (2014)CrossRefGoogle Scholar
  54. 54.
    Suresh, D.; Kumar, M.P.; Nagabhushana, H.; et al.: Cinnamon supported facile green reduction of graphene oxide, its dye elimination and antioxidant activities. Mater. Lett. 151, 93–95 (2015)CrossRefGoogle Scholar
  55. 55.
    Zhang, X.; Li, K.; Li, H.; et al.: Graphene nanosheets synthesis via chemical reduction of graphene oxide using sodium acetate trihydrate solution. Synth. Metals 193, 132–138 (2014)CrossRefGoogle Scholar
  56. 56.
    Hou, D.; Liu, Q.; Cheng, H.; Zhang, H.; Wang, S.: Green reduction of graphene oxide via Lycium barbarum extract. J. Solid. State. Chem. 246, 351–356 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Haluk Korucu
    • 1
  • Barış Şimşek
    • 1
  • Ahmet Yartaşı
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringÇankırı Karatekin UniversityÇankırıTurkey

Personalised recommendations