Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5977–5987 | Cite as

Anticorrosive Performance of New Epoxy-Amine Coatings Based on Zinc Phosphate Tetrahydrate as a Nontoxic Pigment for Carbon Steel in NaCl Medium

  • O. DagdagEmail author
  • A. El Harfi
  • A. Essamri
  • A. El Bachiri
  • N. Hajjaji
  • H. Erramli
  • O. HamedEmail author
  • S. Jodeh
Research Article - Chemical Engineering


Epoxy resin is known to react with a hardener such as polyamine to form a thermoset 3D polymer net with an outstanding physical and mechanical properties. They are widely used in coating and adhesives. In this study, we present a new epoxy resin material useful for making an anticorrosive formulation for carbon steel. The epoxy resin presented in this study is diglycidyl ether 4,\(4^{\prime }\)-dihydroxy diphenyl sulfone (DGEDDS). It was prepared in a two-step process that involves reacting epichlorohydrin with 4, \(4^{\prime }\) dihydroxy diphenyl sulfone then with sodium hydroxide. The structural elucidation of DGEDDS was carried out with Fourier transform infrared. The anticorrosive formulation DGEDDS–MDA–ZPH was prepared from DGEDDS and the hardener 4,\(4^{\prime }\)-methylene dianiline (MDA) in the presence of the anticorrosion pigment zinc phosphate tetrahydrate (ZPH). Another standard formulation (DGEDDS–MDA) was prepared without ZPH. The physicochemical and anticorrosive performance of the coated carbon steel was evaluated using electrochemical impedance spectroscopy (EIS). The coated surface was subjected to morphological characterization by SEM before and after immersion in the corrosive medium and exposing it to the UV radiation. The value of the polarization resistance (\(R_{\mathrm{p}}\)) obtained by the EIS method for the standard coating DGEDDS–MDA and epoxy composite coating DGEDDS–MDA–ZPH was 31898 and 72611 \(\Omega \,\hbox {cm}^{2}\) during the 1 h of immersion in 3 wt% NaCl, respectively. After aging by exposing the coatings for a 2000 h to UV radiation the values were dropped to 2596 and 5189 \(\Omega \,\hbox {cm}^{2}\), respectively. The values show the high stability and resistance of the epoxy resin coating to electrolytes and UV radiation. The coating even showed higher stability in the presence of ZPH pigment. As shown in the results, the tricomponent composite showed an outstanding stability in protecting carbon steel form corrosion in an aggressive marine environment where UV is very intense and the humidity and salts are very high.


Epoxy resin Zinc phosphate tetrahydrate Coating Carbon steel and electrolyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M.; Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Yeh, J.M.: Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14), 5044–5051 (2012)CrossRefGoogle Scholar
  2. 2.
    Chang, K.-C.; Ji, W.-F.; Lai, M.-C.; Hsiao, Y.-R.; Hsu, C.-H.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; Liu, W.-R.; Chang, K.C.; Ji, W.F.; Lai, M.C.; Hsiao, Y.R.; Hsu, C.H.; Chuang, T.L.; Liu, W.R.: Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polym. Chem. 5(3), 1049–1056 (2013)CrossRefGoogle Scholar
  3. 3.
    Ding, J.; ur Rahman, O.; Peng, W.; Dou, H.; Yu, H.: A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterbone graphene/epoxy coatings. Appl. Surf. Sci. 427, 981–991 (2018)CrossRefGoogle Scholar
  4. 4.
    Liu, S.; Yan, H.; Fang, Z.; Wang, H.: Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 90, 40–47 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z.; Zhang, W.; Li, D.; Sun, Y.; Wang, Z.; Hou, C.; Chen, L.; Cao, Y.; Liu, Y.: Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method. Int. J. Mol. Sci. 16(1), 2239–2251 (2015)CrossRefGoogle Scholar
  6. 6.
    Behzadnasab, M.; Mirabedini, S.M.; Esfandeh, M.; Farnood, R.R.: Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog. Org. Coat. 105, 212–224 (2017)CrossRefGoogle Scholar
  7. 7.
    Mahmoodi, A.; Ebrahimi, M.: Role of a hybrid dye–clay nano-pigment (DCNP) on corrosion resistance of epoxy coatings. Prog. Org. Coat. 114, 223–232 (2018)CrossRefGoogle Scholar
  8. 8.
    Jadhav, A.J.; Holkar, C.R.; Pinjari, D.V.: Anticorrosive performance of super-hydrophobic imidazole encapsulated hollow zinc phosphate nanoparticles on mild steel. Prog. Org. Coat. 114, 33–39 (2018)CrossRefGoogle Scholar
  9. 9.
    Ghaffari, M.S.; Naderi, R.; Sayehbani, M.: The effect of mixture of mercaptobenzimidazole and zinc phosphate on the corrosion protection of epoxy/polyamide coating. Prog. Org. Coat. 86, 117–124 (2015)CrossRefGoogle Scholar
  10. 10.
    Gimeno, M.J.; Puig, M.; Chamorro, S.; Molina, J.; March, R.; Oró, E.; Suay, J.J.: Improvement of the anticorrosive properties of an alkyd coating with zinc phosphate pigments assessed by nss and acet. Prog. Org. Coat. 95, 46–53 (2016)CrossRefGoogle Scholar
  11. 11.
    Rangari, V.K.; Bhuyan, M.S.; Jeelani, S.: Microwave curing of CNFs/EPON-862 nanocomposites and their thermal and mechanical properties. Compos. A Appl. Sci. Manuf. 42(7), 849–858 (2011)CrossRefGoogle Scholar
  12. 12.
    Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K.: Molecular dynamics simulation of crosslinked epoxy resins: curing and mechanical properties. Eur. Polym. J. 80, 78–88 (2016)CrossRefGoogle Scholar
  13. 13.
    Ferdosian, F.; Zhang, Y.; Yuan, Z.; Anderson, M.; Xu, C.C.: Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. Eur. Polym. J. 82, 153–165 (2016)CrossRefGoogle Scholar
  14. 14.
    Jin, F.L.; Li, X.; Park, S.J.: Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 29, 1–11 (2015)CrossRefGoogle Scholar
  15. 15.
    Ferdosian, F.; Yuan, Z.; Anderson, M.; Xu, C.C.: Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim. Acta 618, 48–55 (2015)CrossRefGoogle Scholar
  16. 16.
    Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y.: Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl. Surf. Sci. 351, 986–996 (2015)CrossRefGoogle Scholar
  17. 17.
    Kocaman, S.; Ahmetli, G.: A study of coating properties of biobased modified epoxy resin with different hardeners. Prog. Org. Coat. 97, 53–64 (2016)CrossRefGoogle Scholar
  18. 18.
    Jin, F.L.; Liu, H.C.; Yang, B.; Park, S.J.: Synthesis and thermal properties of urethane-containing epoxy resin. J. Ind. Eng. Chem. 24, 20–23 (2015)CrossRefGoogle Scholar
  19. 19.
    Meghraoui, H.; Rami, N.; Echchelh, A.; Elharfi, A.: Etude comparative des propriétés dielectriques des systèmes epoxy-amine dans un champ electrique à basse fréquence. Annales de chimie Lavoisier. 34(3), 141–153 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, H.; Liu, Z.; Wang, E.; Zhang, X.; Yuan, R.; Wu, S.; Zhu, Y.: Facile preparation of superamphiphobic epoxy resin/modified poly (vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance. Appl. Surf. Sci. 357, 229–235 (2015)CrossRefGoogle Scholar
  21. 21.
    El Gouri, M.; El Bachiri, A.; Hegazi, S.E.; Rafik, M.; El Harfi, A.: Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym. Degrad. Stab. 94(11), 2101–2106 (2009)CrossRefGoogle Scholar
  22. 22.
    Pascuta, P.; Borodi, G.; Popa, A.; Dan, V.; Culea, E.: Influence of iron ions on the structural and magnetic properties of some zinc-phosphate glasses. Mater. Chem. Phys. 123(2), 767–771 (2010)CrossRefGoogle Scholar
  23. 23.
    Palimi, M.J.; Alibakhshi, E.; Ramezanzadeh, B.; Bahlakeh, G.; Mahdavian, M.: Screening the anti-corrosion effect of a hybrid pigment based on zinc acetyl acetonate on the corrosion protection performance of an epoxy-ester polymeric coating. J. Taiwan Inst. Chem. Eng. 82, 261–272 (2018)CrossRefGoogle Scholar
  24. 24.
    Guo, B.; Finne-Wistrand, A.; Albertsson, A.C.: Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules 11(4), 855–863 (2010)CrossRefGoogle Scholar
  25. 25.
    Haddadi, S.A.; Mahdavian, M.; Karimi, E.: Evaluation of the corrosion protection properties of an epoxy coating containing sol-gel surface modified nano-zirconia on mild steel. RSC Adv. 5(36), 28769–28777 (2015)CrossRefGoogle Scholar
  26. 26.
    Motamedi, M.; Attar, M.M.: anostructured vanadium-based conversion treatment of mild steel substrate: formation process via noise measurement, surface analysis and anti-corrosion behavior. RSC Adv. 6(50), 44732–44741 (2016)CrossRefGoogle Scholar
  27. 27.
    Avci, G.: Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl. Colloids Surf., A 317(1), 730–736 (2008)CrossRefGoogle Scholar
  28. 28.
    Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y.: Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog. Org. Coat. 64(4), 497–503 (2009)CrossRefGoogle Scholar
  29. 29.
    Montemor, M.F.; Snihirova, D.V.; Taryba, M.G.; Lamaka, S.V.; Kartsonakis, I.A.; Balaskas, A.C.; Ferreira, M.G.S.: Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim. Acta 60, 31–40 (2012)CrossRefGoogle Scholar
  30. 30.
    Ramezanzadeh, B.; Attar, M.M.: Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles. Mater. Chem. Phys. 130(3), 1208–1219 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • O. Dagdag
    • 1
    Email author
  • A. El Harfi
    • 1
  • A. Essamri
    • 1
  • A. El Bachiri
    • 1
    • 2
  • N. Hajjaji
    • 3
  • H. Erramli
    • 3
  • O. Hamed
    • 4
    Email author
  • S. Jodeh
    • 4
  1. 1.Laboratory of Agroresources, Polymers and Process Engineering (LAPPE), Team of Macromolecular and Organic Chemistry (TMOC), Department of Chemistry, Faculty of ScienceIbn Tofail UniversityKenitraMorocco
  2. 2.University DepartmentRoyal Naval SchoolCasablancaMorocco
  3. 3.Laboratory of Materials, Electrochemistry and Environment (LMEE), Department of Chemistry, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  4. 4.Department of ChemistryAn-Najah National UniversityNablusPalestine

Personalised recommendations