Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5957–5963 | Cite as

Quartz Crystal Microbalance Coated with Vanadium Oxide Thin Film for \(\hbox {CO}_{2}\) Gas Sensor at Room Temperature

  • Malika BerouakenEmail author
  • Lamia Talbi
  • Rezak Alkama
  • Sabrina Sam
  • Hamid Menari
  • Katia Chebout
  • Amar Manseri
  • Abdelghani Boucheham
  • Noureddine Gabouze
Research Article - Chemical Engineering


A gas-sensing device based on quartz crystal microbalance (QCM) covered with vanadium oxide thin film has been elaborated to detect \(\hbox {CO}_{2}\) gas at room temperature. Vanadium oxide thin films were deposited onto QCM substrates by vacuum thermal evaporation technique. The vanadium oxide-coated QCM was heated at \(200\,^{\circ }\hbox {C}\) for different times. The influence of the annealing time on structural and morphological properties of the deposited films was investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The elaborated QCM/vanadium oxide structures were tested for \(\hbox {CO}_{2}\) gas sensing. The results show that the sensor sensitivity increases with the annealing time due to the increase in the roughness of the surface. Moreover, the structure heated at \(200\,^{\circ }\hbox {C}\) for 3 h exhibited a high resonance frequency shift (\(\Delta f\)) under a \(\hbox {CO}_{2}\) pressure of 40 mbar, fast response time (57 s), short recovery time (43 s), good stability, linearity, reproducibility, and reversibility.


Vanadium oxide Thin films Quartz crystal microbalance Gas sensor \(\hbox {CO}_{2}\) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun, P.; Jiang, Y.; Xie, G.; Du, X.; Hu, J.: A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B 141, 104–108 (2009)CrossRefGoogle Scholar
  2. 2.
    Joo, J.; Lee, D.; Yoo, M.; Jeon, S.: ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells. Sens. Actuators B 138, 485–490 (2009)CrossRefGoogle Scholar
  3. 3.
    Ayad, M.M.; Torad, N.L.: Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B 147, 481–487 (2010)CrossRefGoogle Scholar
  4. 4.
    Minh, V.A.; Tuan, L.A.; Huy, T.Q.; Hung, V.N.; Quy, N.V.: Enhanced \(\text{ NH }_{3}\) gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)CrossRefGoogle Scholar
  5. 5.
    Banerjee, S.; Konwar, D.; Kumar, A.: Polyaniline nanofiber reinforced nanocomposite based highly sensitive piezoelectric sensors for selective detection of hydrochloric acid: analysis of response mechanism. Sens. Actuators B 190, 199–207 (2014)CrossRefGoogle Scholar
  6. 6.
    Ayad, M.M.; El-Hefnawey, G.; Torad, N.L.: Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons. Sens. Actuators B 134, 887–894 (2008)CrossRefGoogle Scholar
  7. 7.
    Quy, N.V.; Minh, V.A.; Luan, N.V.; Hung, V.N.; Hieu, N.V.: Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sens. Actuators B 153, 188–193 (2011)CrossRefGoogle Scholar
  8. 8.
    Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yuc, J.; Al-Deyab, S.S.: Functionalized nanoporous \(\text{ TiO }_{2}\) fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens. Actuators B 171–172, 658–665 (2012)CrossRefGoogle Scholar
  9. 9.
    Iwamori, S.; Yoshino, K.; Matsumoto, H.; Noda, K.; Nishiyama, I.: Active oxygen sensors used a quartz crystal microbalance (QCM) with sputter-coated and spin-coated poly(tetrafluoroethylene) thin films. Sens. Actuators B 171–172, 769–776 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, X.; Chen, X.; Yao, Y.; Li, N.; Chen, X.: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B 196, 183–188 (2014)CrossRefGoogle Scholar
  11. 11.
    Ihdene, Z.; Mekki, A.; Mettai, B.; Mahmoud, R.; Hamada, B.; Chehimi, M.M.: Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films. Sens. Actuators B 203, 647–654 (2014)CrossRefGoogle Scholar
  12. 12.
    Dhayal Raj, A.; Suresh Kumar, P.; Yang, Q.; Mangalaraj, D.: Synthesis and gas sensors behavior of surfactants free \(\text{ V }_{2}\text{ O }_{5}\) nanostructure by using a simple precipitation method. Phys. E Low-dimens. Syst. Nanostruct. 44, 1490–1494 (2012)CrossRefGoogle Scholar
  13. 13.
    Modafferi, V.; Panzera, G.; Donato, A.; Antonucci, P.L.; Cannilla, C.; Donato, N.; Spadaro, D.; Neri, G.: Highly sensitive ammonia resistive sensor based on electrospun \(\text{ V }_{2}\text{ O }_{5}\) fibers. Sens. Actuators B 163, 61–68 (2012)CrossRefGoogle Scholar
  14. 14.
    Chebout, K.; Iratni, A.; Bouremana, A.; Sam, S.; Keffous, A.; Gabouze, N.: Electrical characterization of ethanol sensing device based on Vanadium oxide/Porous Si/Si structure. Solid State Ionics 253, 164–168 (2013)CrossRefGoogle Scholar
  15. 15.
    Qin, Y.; Fan, G.; Liu, K.; Hu, M.: Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic. Sens. Actuators B 190, 141–148 (2014)CrossRefGoogle Scholar
  16. 16.
    Jin, W.; Yan, S.; An, L.; Chen, W.; Yang, S.; Zhao, Ch; Dai, Y.: Enhancement of ethanol gas sensing response based on ordered \(\text{ V }_{2}\text{ O }_{5}\) nanowire microyarns. Sens. Actuators B 206, 284–290 (2015)CrossRefGoogle Scholar
  17. 17.
    Mulmi, S.; Kannan, R.; Thangadurai, V.: \(\text{ CO }_{2}\) and \(\text{ SO }_{2}\) tolerant Fe-doped metal oxides for solid state gas sensors. Solid State Ionics 262, 274–278 (2014)CrossRefGoogle Scholar
  18. 18.
    Atamanchuk, D.; Tengberg, A.; Aleynik, D.; Fietzek, P.; Shitashima, K.; Lichtschlag, A.; Hall, P.O.J.; Stahl, H.: Detection of \(\text{ CO }_{2}\) leakage from a simulated sub-seabed storage site using three different types of \(\text{ p }\text{ CO }_{2}\) sensors. Int. J. Greenhouse Gas Control 38, 121–134 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, H.; Chen, D.; Zhang, M.; Wang, J.: Influence of the sensing and reference electrodes relative size on the sensing properties of \(\text{ Li }_{3}\text{ PO }_{4}\)-based potentiometric \(\text{ CO }_{2}\) sensors. Surf. Coat. Technol. 320, 542–547 (2017)CrossRefGoogle Scholar
  20. 20.
    Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P.: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2m in a compact and optically efficient sensor. Sens. Actuators B 186, 580–588 (2013)CrossRefGoogle Scholar
  21. 21.
    Lee, H.J.; Park, K.K.; Kupnik, M.; Khuri-Yakub, B.T.: Functionalization layers for \(\text{ CO }_{2}\) sensing using capacitive micromachined ultrasonic transducers. Sens. Actuators B Chem. 174, 87–93 (2012)CrossRefGoogle Scholar
  22. 22.
    Satyanarayana, L.; Noh, W.S.; Kim, G.H.; Lee, W.Y.; Park, J.S.: A low temperature potentiometric \(\text{ CO }_{2}\) sensor combined with \(\text{ SiO }_{2}:\text{ B }_{2}\text{ O }_{3}:\text{ Li }_{2}\text{ O:Bi }_{2}\text{ O }_{3}\) composite metal oxide. IEEE Sens. J. 8, 1565–1570 (2008)CrossRefGoogle Scholar
  23. 23.
    Pasierb, P.; Rekas, M.: Solid-state potentiometric gas sensors current status and future trends. J. Solid State Electrochem. 13, 3–25 (2009)CrossRefGoogle Scholar
  24. 24.
    Wang, H.; Ren, J.; Zhang, H.; Sun, G.; Jiang, Z.: Solid potentiometric \(\text{ CO }_{2}\) sensor using \(\text{ Li }_{3}\text{ PO }_{4}\) film as the electrolyte. IEEE Sens. J. 12, 2001–2005 (2012)CrossRefGoogle Scholar
  25. 25.
    Gabouze, N.; Belhousse, S.; Cheraga, H.; Ghellaib, N.; Ouadah, Y.; Belkacema, Y.; Keffous, A.: \(\text{ CO }_{2}\) and \(\text{ H }_{2}\) detection with a CHx/ porous silicon-based sensor. Vacuum 80, 986–989 (2006)CrossRefGoogle Scholar
  26. 26.
    Mardare, D.; Cornei, N.; Mitab, C.; Florea, D.; Stancu, A.; Tiron, V.; Manole, A.; Adomnitei, C.: Low temperature TiO\(_2\) based gas sensors for CO\(_2\). Ceram. Int. 42, 7353–7359 (2016)CrossRefGoogle Scholar
  27. 27.
    Sauerbrey, G.W.: The use of quartz crystal oscillators for weighing thin layer and for microweighing. Z. Phys. 155, 206–222 (1959)CrossRefGoogle Scholar
  28. 28.
    Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.: Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors. Thin Solid Films 552, 196–203 (2014)CrossRefGoogle Scholar
  29. 29.
    Shankar, P.; Rayappan, J.B.B.: Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. ScienceJet 4, 126–143 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Malika Berouaken
    • 1
    • 2
    Email author
  • Lamia Talbi
    • 2
  • Rezak Alkama
    • 1
  • Sabrina Sam
    • 2
  • Hamid Menari
    • 2
  • Katia Chebout
    • 2
  • Amar Manseri
    • 2
  • Abdelghani Boucheham
    • 2
  • Noureddine Gabouze
    • 2
  1. 1.Laboratoire de Génie ElectriqueUniversité Abderrahmane Mira BejaiaBéjaïaAlgeria
  2. 2.Division Couches Minces Surfaces et InterfacesCentre de Recherche en Technologie des Semi-conducteurs pour l’EnergétiqueAlgiersAlgeria

Personalised recommendations