Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5957–5963 | Cite as

Quartz Crystal Microbalance Coated with Vanadium Oxide Thin Film for \(\hbox {CO}_{2}\) Gas Sensor at Room Temperature

  • Malika Berouaken
  • Lamia Talbi
  • Rezak Alkama
  • Sabrina Sam
  • Hamid Menari
  • Katia Chebout
  • Amar Manseri
  • Abdelghani Boucheham
  • Noureddine Gabouze
Research Article - Chemical Engineering

Abstract

A gas-sensing device based on quartz crystal microbalance (QCM) covered with vanadium oxide thin film has been elaborated to detect \(\hbox {CO}_{2}\) gas at room temperature. Vanadium oxide thin films were deposited onto QCM substrates by vacuum thermal evaporation technique. The vanadium oxide-coated QCM was heated at \(200\,^{\circ }\hbox {C}\) for different times. The influence of the annealing time on structural and morphological properties of the deposited films was investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The elaborated QCM/vanadium oxide structures were tested for \(\hbox {CO}_{2}\) gas sensing. The results show that the sensor sensitivity increases with the annealing time due to the increase in the roughness of the surface. Moreover, the structure heated at \(200\,^{\circ }\hbox {C}\) for 3 h exhibited a high resonance frequency shift (\(\Delta f\)) under a \(\hbox {CO}_{2}\) pressure of 40 mbar, fast response time (57 s), short recovery time (43 s), good stability, linearity, reproducibility, and reversibility.

Keywords

Vanadium oxide Thin films Quartz crystal microbalance Gas sensor \(\hbox {CO}_{2}\) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, P.; Jiang, Y.; Xie, G.; Du, X.; Hu, J.: A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B 141, 104–108 (2009)CrossRefGoogle Scholar
  2. 2.
    Joo, J.; Lee, D.; Yoo, M.; Jeon, S.: ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells. Sens. Actuators B 138, 485–490 (2009)CrossRefGoogle Scholar
  3. 3.
    Ayad, M.M.; Torad, N.L.: Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B 147, 481–487 (2010)CrossRefGoogle Scholar
  4. 4.
    Minh, V.A.; Tuan, L.A.; Huy, T.Q.; Hung, V.N.; Quy, N.V.: Enhanced \(\text{ NH }_{3}\) gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)CrossRefGoogle Scholar
  5. 5.
    Banerjee, S.; Konwar, D.; Kumar, A.: Polyaniline nanofiber reinforced nanocomposite based highly sensitive piezoelectric sensors for selective detection of hydrochloric acid: analysis of response mechanism. Sens. Actuators B 190, 199–207 (2014)CrossRefGoogle Scholar
  6. 6.
    Ayad, M.M.; El-Hefnawey, G.; Torad, N.L.: Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons. Sens. Actuators B 134, 887–894 (2008)CrossRefGoogle Scholar
  7. 7.
    Quy, N.V.; Minh, V.A.; Luan, N.V.; Hung, V.N.; Hieu, N.V.: Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sens. Actuators B 153, 188–193 (2011)CrossRefGoogle Scholar
  8. 8.
    Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yuc, J.; Al-Deyab, S.S.: Functionalized nanoporous \(\text{ TiO }_{2}\) fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens. Actuators B 171–172, 658–665 (2012)CrossRefGoogle Scholar
  9. 9.
    Iwamori, S.; Yoshino, K.; Matsumoto, H.; Noda, K.; Nishiyama, I.: Active oxygen sensors used a quartz crystal microbalance (QCM) with sputter-coated and spin-coated poly(tetrafluoroethylene) thin films. Sens. Actuators B 171–172, 769–776 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, X.; Chen, X.; Yao, Y.; Li, N.; Chen, X.: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B 196, 183–188 (2014)CrossRefGoogle Scholar
  11. 11.
    Ihdene, Z.; Mekki, A.; Mettai, B.; Mahmoud, R.; Hamada, B.; Chehimi, M.M.: Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films. Sens. Actuators B 203, 647–654 (2014)CrossRefGoogle Scholar
  12. 12.
    Dhayal Raj, A.; Suresh Kumar, P.; Yang, Q.; Mangalaraj, D.: Synthesis and gas sensors behavior of surfactants free \(\text{ V }_{2}\text{ O }_{5}\) nanostructure by using a simple precipitation method. Phys. E Low-dimens. Syst. Nanostruct. 44, 1490–1494 (2012)CrossRefGoogle Scholar
  13. 13.
    Modafferi, V.; Panzera, G.; Donato, A.; Antonucci, P.L.; Cannilla, C.; Donato, N.; Spadaro, D.; Neri, G.: Highly sensitive ammonia resistive sensor based on electrospun \(\text{ V }_{2}\text{ O }_{5}\) fibers. Sens. Actuators B 163, 61–68 (2012)CrossRefGoogle Scholar
  14. 14.
    Chebout, K.; Iratni, A.; Bouremana, A.; Sam, S.; Keffous, A.; Gabouze, N.: Electrical characterization of ethanol sensing device based on Vanadium oxide/Porous Si/Si structure. Solid State Ionics 253, 164–168 (2013)CrossRefGoogle Scholar
  15. 15.
    Qin, Y.; Fan, G.; Liu, K.; Hu, M.: Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic. Sens. Actuators B 190, 141–148 (2014)CrossRefGoogle Scholar
  16. 16.
    Jin, W.; Yan, S.; An, L.; Chen, W.; Yang, S.; Zhao, Ch; Dai, Y.: Enhancement of ethanol gas sensing response based on ordered \(\text{ V }_{2}\text{ O }_{5}\) nanowire microyarns. Sens. Actuators B 206, 284–290 (2015)CrossRefGoogle Scholar
  17. 17.
    Mulmi, S.; Kannan, R.; Thangadurai, V.: \(\text{ CO }_{2}\) and \(\text{ SO }_{2}\) tolerant Fe-doped metal oxides for solid state gas sensors. Solid State Ionics 262, 274–278 (2014)CrossRefGoogle Scholar
  18. 18.
    Atamanchuk, D.; Tengberg, A.; Aleynik, D.; Fietzek, P.; Shitashima, K.; Lichtschlag, A.; Hall, P.O.J.; Stahl, H.: Detection of \(\text{ CO }_{2}\) leakage from a simulated sub-seabed storage site using three different types of \(\text{ p }\text{ CO }_{2}\) sensors. Int. J. Greenhouse Gas Control 38, 121–134 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, H.; Chen, D.; Zhang, M.; Wang, J.: Influence of the sensing and reference electrodes relative size on the sensing properties of \(\text{ Li }_{3}\text{ PO }_{4}\)-based potentiometric \(\text{ CO }_{2}\) sensors. Surf. Coat. Technol. 320, 542–547 (2017)CrossRefGoogle Scholar
  20. 20.
    Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P.: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2m in a compact and optically efficient sensor. Sens. Actuators B 186, 580–588 (2013)CrossRefGoogle Scholar
  21. 21.
    Lee, H.J.; Park, K.K.; Kupnik, M.; Khuri-Yakub, B.T.: Functionalization layers for \(\text{ CO }_{2}\) sensing using capacitive micromachined ultrasonic transducers. Sens. Actuators B Chem. 174, 87–93 (2012)CrossRefGoogle Scholar
  22. 22.
    Satyanarayana, L.; Noh, W.S.; Kim, G.H.; Lee, W.Y.; Park, J.S.: A low temperature potentiometric \(\text{ CO }_{2}\) sensor combined with \(\text{ SiO }_{2}:\text{ B }_{2}\text{ O }_{3}:\text{ Li }_{2}\text{ O:Bi }_{2}\text{ O }_{3}\) composite metal oxide. IEEE Sens. J. 8, 1565–1570 (2008)CrossRefGoogle Scholar
  23. 23.
    Pasierb, P.; Rekas, M.: Solid-state potentiometric gas sensors current status and future trends. J. Solid State Electrochem. 13, 3–25 (2009)CrossRefGoogle Scholar
  24. 24.
    Wang, H.; Ren, J.; Zhang, H.; Sun, G.; Jiang, Z.: Solid potentiometric \(\text{ CO }_{2}\) sensor using \(\text{ Li }_{3}\text{ PO }_{4}\) film as the electrolyte. IEEE Sens. J. 12, 2001–2005 (2012)CrossRefGoogle Scholar
  25. 25.
    Gabouze, N.; Belhousse, S.; Cheraga, H.; Ghellaib, N.; Ouadah, Y.; Belkacema, Y.; Keffous, A.: \(\text{ CO }_{2}\) and \(\text{ H }_{2}\) detection with a CHx/ porous silicon-based sensor. Vacuum 80, 986–989 (2006)CrossRefGoogle Scholar
  26. 26.
    Mardare, D.; Cornei, N.; Mitab, C.; Florea, D.; Stancu, A.; Tiron, V.; Manole, A.; Adomnitei, C.: Low temperature TiO\(_2\) based gas sensors for CO\(_2\). Ceram. Int. 42, 7353–7359 (2016)CrossRefGoogle Scholar
  27. 27.
    Sauerbrey, G.W.: The use of quartz crystal oscillators for weighing thin layer and for microweighing. Z. Phys. 155, 206–222 (1959)CrossRefGoogle Scholar
  28. 28.
    Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.: Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors. Thin Solid Films 552, 196–203 (2014)CrossRefGoogle Scholar
  29. 29.
    Shankar, P.; Rayappan, J.B.B.: Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. ScienceJet 4, 126–143 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Malika Berouaken
    • 1
    • 2
  • Lamia Talbi
    • 2
  • Rezak Alkama
    • 1
  • Sabrina Sam
    • 2
  • Hamid Menari
    • 2
  • Katia Chebout
    • 2
  • Amar Manseri
    • 2
  • Abdelghani Boucheham
    • 2
  • Noureddine Gabouze
    • 2
  1. 1.Laboratoire de Génie ElectriqueUniversité Abderrahmane Mira BejaiaBéjaïaAlgeria
  2. 2.Division Couches Minces Surfaces et InterfacesCentre de Recherche en Technologie des Semi-conducteurs pour l’EnergétiqueAlgiersAlgeria

Personalised recommendations