Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5965–5976 | Cite as

Analysis of Magnesium Droplets Characteristics and Separation Performance in a Magnesium Electrolysis Cell Based on Multiphysical Modeling

  • Cheng-Lin LiuEmail author
  • Qian-Wen Zhao
  • Ze Sun
  • Gui-Min Lu
  • Jian-Guo Yu
Research Article - Chemical Engineering


Magnesium production is one of the most energy-intensive industrial processes. The core reactor is the magnesium electrolysis cell, and its electrolysis efficiency is a crucial factor that profoundly affects the amount of energy consumed. This work concerns the optimization of the electrolysis cell based on a three-dimensional thermo–electro–magneto-hydrodynamics coupling model. The new method takes into account of three types of electrolyte circulations in the cell. A particle tracking method coupled with the multiphysical model is also developed. The new model is an innovative approach in the evaluation of the primary separation rate of the magnesium droplets (PSR). The PSR in the original cell is about 16.6%. The effects of current intensity, cathode–anode distance, diameters of gas bubbles and magnesium droplets on the improvement of the PSR are negligible, whereas an increase in anode width significantly improves the PSR. Using the new multi-field model, two new modified electrolysis cells are designed by optimizing the cathode structure. The newly designed cells improve the PSR’s by 30.1 and 61.9%, significantly improving their electrolysis efficiency.


Electrolysis efficiency Magnesium electrolysis cell Multiphysical fields Primary separation rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support provided by National Natural Science Foundation of China (Grants 51504099 and U1407202) and Qinghai Science and Technology Department (Grant No. 2015-GX-Q19A).


  1. 1.
    Aghion, E.; Golub, G.: Production technologies of magnesium. In: Friedrich, H.E., Mordike, B.L. (eds.) Magnesium Technology: Metallurgy, Design Data, Applications, pp. 29–62. Springer, Berlin (2006)CrossRefGoogle Scholar
  2. 2.
    Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008). CrossRefGoogle Scholar
  3. 3.
    Das, S.: Magnesium for automotive applications: primary production cost assessment. JOM 55, 22–26 (2003). CrossRefGoogle Scholar
  4. 4.
    Zhang, Z.; Lu, X.; Wang, T.; Yan, Y.; Chen, S.: Synthesis and electrolysis of \(\text{ K }_3\text{ NaMgCl }_6\). Ind. Eng. Chem. Res. 54, 1433–1438 (2015). CrossRefGoogle Scholar
  5. 5.
    Beals, R.S.; Tissington, C.; Zhang, X.; Kainer, K.; Petrillo, J.; Verbrugge, M.; Pekguleryuz, M.: Magnesium global development: outcomes from the TMS 2007 annual meeting. In: JOM. pp. 39–42 (2007)CrossRefGoogle Scholar
  6. 6.
    Sharma, R.A.: A new electrolytic magnesium production process. JOM 48, 39–43 (1996). CrossRefGoogle Scholar
  7. 7.
    Holywell, G.: Magnesium: the first quarter millennium. JOM J. Miner. Metals Mater. Soc. 57, 26–33 (2005). CrossRefGoogle Scholar
  8. 8.
    Spasojević, M.; Krstajić, N.; Spasojević, P.; Ribić-Zelenović, L.: Modelling current efficiency in an electrochemical hypochlorite reactor. Chem. Eng. Res. Des. 93, 591–601 (2015). CrossRefGoogle Scholar
  9. 9.
    Eklund, H.; Engseth,; Langseth, B.; Mellerud, T.; Wallevik, O.: Magnesium technology 2002. In: Kaplan, H.I. (ed.) Magnesium Technology, pp. 22–28. TMS (The Minerals, Metals & Materials Society), Warrendale (2002)Google Scholar
  10. 10.
    Perron, A.L.; Kiss, L.I.; Poncsák, S.: Mathematical model to evaluate the ohmic resistance caused by the presence of a large number of bubbles in Hall–Héroult cells. J. Appl. Electrochem. 37, 303–310 (2007). CrossRefGoogle Scholar
  11. 11.
    Rao, G.M.: Electrolytic production of magnesium: effect of current density. J. Appl. Electrochem. 16, 775–780 (1986). CrossRefGoogle Scholar
  12. 12.
    Rao, G.M.: Electrochemical studies of magnesium ions in magnesium chloride containing chloride melt at \(710\pm 10\,^\circ \text{ C }\). J. Electroanal. Chem. 249, 191–203 (1988). CrossRefGoogle Scholar
  13. 13.
    Tessier, J.; Duchesne, C.; Tarcy, G.P.; Gauthier, C.; Dufour, G.: Multivariate analysis and monitoring of the performance of aluminum reduction cells. Ind. Eng. Chem. Res. 51, 1311–1323 (2012). CrossRefGoogle Scholar
  14. 14.
    Gerogiorgis, D.I.; Ydstie, B.E.: Multiphysics CFD modelling for design and simulation of a multiphase chemical reactor. Chem. Eng. Res. Des. 83, 603–610 (2005). CrossRefGoogle Scholar
  15. 15.
    Tsuge, H.; Tozawa, K.; Muguruma, Y.; Kawabe, M.; Abe, M.; Sagiyama, M.: Effect of gas holdup on current density distribution in horizontal electrolysis cell. Can. J. Chem. Eng. 81, 707–712 (2008). CrossRefGoogle Scholar
  16. 16.
    Zhang, D.; Zeng, K.: Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis. Ind. Eng. Chem. Res. 51, 13825–13832 (2012). CrossRefGoogle Scholar
  17. 17.
    Burns, R.M.: Electrochemical industry. Ind. Eng. Chem. 43, 301–304 (1951)CrossRefGoogle Scholar
  18. 18.
    Oliaii, E.; Désilets, M.; Lantagne, G.: Numerical analysis of the effect of structural and operational parameters on electric and concentration fields of a lithium electrolysis cell. J. Appl. Electrochem. (2017). CrossRefGoogle Scholar
  19. 19.
    Zhang, Y.; Bai, Y.; Wang, H.: CFD analysis of inter-phase forces in a bubble stirred vessel. Chem. Eng. Res. Des. 91, 29–35 (2013). CrossRefGoogle Scholar
  20. 20.
    Zhang, Q.; Taylor, M.P.; Chen, J.J.J.: Computational modeling of thermochemical evolution of aluminum smelter crust. Metall. Mater. Trans. B 46, 1520–1534 (2015). CrossRefGoogle Scholar
  21. 21.
    Rezvanpour, A.; Lim, E.W.C.; Wang, C.-H.: Computational and experimental studies of electrohydrodynamic atomization for pharmaceutical particle fabrication. AIChE J. 58, 3329–3340 (2012). CrossRefGoogle Scholar
  22. 22.
    Richard, D.; Fafard, M.; Lacroix, R.; Cléry, P.; Maltais, Y.: Aluminum reduction cell anode stub hole design using weakly coupled thermo–electro-mechanical finite element models. Finite Elem. Anal. Des. 37, 287–304 (2001). CrossRefzbMATHGoogle Scholar
  23. 23.
    Severo, D.S.; Schneider, A.F.; Pinto, E.C.V.; Gusberti, V.; Potocnik, V.: Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX. Light Met. 2005, 475–480 (2005)Google Scholar
  24. 24.
    Sun, Z.; Zhang, H.; Li, P.; Li, B.; Lu, G.; Yu, J.: Modeling and simulation of the flow field in the electrolysis of magnesium. JOM 61, 29–33 (2009). CrossRefGoogle Scholar
  25. 25.
    Sun, Z.; Li, P.; Lu, G.M.; Li, B.; Wang, J.; Yu, J.G.: Effect of electromagnetic field on three-phase flow behavior. Ind. Eng. Chem. Res. 49, 10798–10803 (2010). CrossRefGoogle Scholar
  26. 26.
    Demirci, G.; Karakaya, I.: Electrolytic magnesium production and its hydrodynamics by using an Mg–Pb alloy cathode. J. Alloys Compd. 465, 255–260 (2008). CrossRefGoogle Scholar
  27. 27.
    Demirci, G.; Karakaya, I.: Collection of magnesium in an Mg–Pb alloy cathode placed at the bottom of the cell in \(\text{ MgCl }_2\) electrolysis. J. Alloys Compd. 439, 237–242 (2007). CrossRefGoogle Scholar
  28. 28.
    Sun, Z.; Zhao, Y.; Lu, G.M.; Li, P.; Wang, J.; Yu, J.G.: Novel method based on electric field simulation and optimization for designing an energy-saving magnesium electrolysis cell. Ind. Eng. Chem. Res. 50, 6161–6173 (2011). CrossRefGoogle Scholar
  29. 29.
    Sun, Z.; Liu, C.; Lu, G.; Song, X.; Sun, S.; Sun, Y.; Yu, J.: Coupled thermoelectric model and effects of current fluctuation on thermal balance in magnesium electrolysis cell. Energy Fuels 25, 2655–2663 (2011). CrossRefGoogle Scholar
  30. 30.
    Sun, Z.; Cai, L.; Liu, C.; Lu, G.; Yu, J.: Analysis for effects of electrolyte level on energy consumption in magnesium electrolysis by finite element method. Can. J. Chem. Eng. 9999, 1–8 (2016). CrossRefGoogle Scholar
  31. 31.
    Liu, C.; Sun, Z.; Lu, G.; Song, X.; Ding, Y.; Yu, J.: Scale-up design of a 300 kA magnesium electrolysis cell based on thermo-electric mathematical models. Can. J. Chem. Eng. 92, 1197–1206 (2014). CrossRefGoogle Scholar
  32. 32.
    Ogunnaike, B.A.; Mukati, K.; Eser, E.; Fields, S.; Birkmire, R.W.: Scaleup of Cu(InGa)Se(2) thin film coevaporative physical vapor deposition process, 1. Evaporation source model development. Ind. Eng. Chem. Res. 48, 5975–5991 (2009). CrossRefGoogle Scholar
  33. 33.
    Stratton, J.A.: Electromagnetic Theory, pp. 1–6. Wiley, Hoboken (2007)Google Scholar
  34. 34.
    Liu, C.; Sun, Z.; Lu, G.; Song, X.; Yu, J.: Effect of Lorentz force on motion of electrolyte in magnesium electrolysis cell. ACES Exp. J. 1, 149–152 (2016)Google Scholar
  35. 35.
    Sokolichin, A.; Eigenberger, G.; Lapin, A.: Simulation of Buoyancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 24–45 (2004). CrossRefGoogle Scholar
  36. 36.
    Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983). CrossRefGoogle Scholar
  37. 37.
    Díaz, M.E.; Iranzo, A.; Cuadra, D.; Barbero, R.; Montes, F.J.; Galán, M.A.: Numerical simulation of the gas–liquid flow in a laboratory scale bubble column. Chem. Eng. J. 139, 363–379 (2008). CrossRefGoogle Scholar
  38. 38.
    Talvy, S.; Cockx, A.; Liné, A.: Modeling hydrodynamics of gas–liquid airlift reactor. AIChE J. 53, 335–353 (2007). CrossRefGoogle Scholar
  39. 39.
    Mahon, M.; Peng, S.; Alfantazi, A.: Application and optimisation studies of a zinc electrowinning process simulation. Can. J. Chem. Eng. 92, 633–642 (2014). CrossRefGoogle Scholar
  40. 40.
    Das, S.; Brooks, G.; Morsi, Y.: Theoretical investigation of the inclined sidewall design on magnetohydrodynamic (MHD) forces in an aluminum electrolytic cell. Metall. Mater. Trans. B 42, 243–253 (2011). CrossRefGoogle Scholar
  41. 41.
    Liu, C.; Sun, Z.; Lu, G.; Song, X.; Yu, J.: 3D and 2D experimental views on the flow field of gas-evolving electrode cold model for electrolysis magnesium. Flow Meas. Instrum. 45, 415–420 (2015). CrossRefGoogle Scholar
  42. 42.
    Zhang, Y.: Electrolytic metallurgy of magnesium. Central south university, Changsha, China (2006)Google Scholar
  43. 43.
    Culpin, M.F.: The viscosity of liquid magnesium and liquid calcium. Proc. Phys. Soc. Sect. B. 70, 1079–1086 (1957). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.National Engineering Research Center for Integrated Utilization of Salt Lake ResourceEast China University of Science and TechnologyShanghaiChina
  2. 2.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations