Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6375–6389 | Cite as

Development of New Mathematical Model for Compressional and Shear Sonic Times from Wireline Log Data Using Artificial Intelligence Neural Networks (White Box)

  • Salaheldin ElkatatnyEmail author
  • Zeeshan Tariq
  • Mohamed Mahmoud
  • Ibrahim Mohamed
  • Abdulazeez Abdulraheem
Research Article - Petroleum Engineering


Compressional (P-wave) and shear (S-wave) velocities are used to estimate the dynamic geomechanical properties including: Poisson’s ratio, Young’s modulus, and Lamé parameters. These parameters are mainly used in estimating the static properties of the formation rocks as well as the in situ stresses. The sonic logs are not always available, epically for old wellbores. Also, in several occasions when the sonic logs are available, missing sections found in the well logs might affect the analysis results. To the authors’ knowledge, there is no single straightforward correlation that can be used to accurately estimate both P- and S-wave travel times directly from the well log data. Most of the existing correlations use the P-wave velocity to measure the S-wave velocity. The main purpose of this study is to develop accurate and simple empirical models using wireline log data (bulk density, gamma ray, and neutron porosity) to predict the sonic travel times (P-wave and S-wave). These wireline logs are slandered wireline log data that are commonly recorded in most of the wells. Three robust artificial intelligence techniques, namely: support vector machine (SVM), artificial neural network (ANN), and adaptive neurofuzzy interference systems (ANFIS), were employed and compared based on their prediction performance. Ultimately, using the weights and biases of optimized ANN model, a simple generalized empirical correlation is derived that can be used without the need of costly commercial software’s to run the AI models. The obtained results showed that ANN, ANFIS, and SVM can be used to estimate P-wave and S-wave travel times. ANN outperformed the ANFIS and SVM by yielding the lowest average absolute percentage error (AAPE) and the highest coefficient of determination \(\left( R^{2}\right) \) for predicting P-wave and S-wave travel times. ANN model could predict the P-wave and S-wave travel times from wireline log data with high accuracy giving \(R^{2}\) of 0.98 when compared to actual field data. In addition, the developed empirical correlations prediction completely matched the ANNs prediction. The AAPE of the predicted P and S-waves travel times was less than 5%. The developed correlations are very accurate and can help geomechanical engineers to determine the dynamic geomechanical properties (Poisson’s ratio and Young’s modulus) and propose any operation in case where sonic logs are missing.


Sonic log Compressional and shear times Gamma ray Bulk density Neutron porosity Artificial intelligence Neural network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A.: A holistic approach to develop new rigorous empirical correlation for static young’s modulus. In: Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers (2016)Google Scholar
  2. 2.
    Moos, D.; Peska, P.; Finkbeiner, T.; Zoback, M.: Comprehensive wellbore stability analysis utilizing quantitative risk assessment. J. Pet. Sci. Eng. 38, 97–109 (2003). CrossRefGoogle Scholar
  3. 3.
    Santarelli, F.J.; Detienne, J.L.; Zundel, J.P.: Determination of the mechanical properties of deep reservoir sandstones to assess the likelyhood of sand production. Presented at the (1989)Google Scholar
  4. 4.
    Potter, C.C.; Foltinek, D.S.: Formation elastic parameters by deriving S-wave velocity logs. In: Consortium for Research in Elastic .... p. 10/1–13. CREWES Research Report (1997)Google Scholar
  5. 5.
    Pickett, G.R.: Acoustic character logs and their applications in formation evaluation. J. Pet. Technol. 15, 659–667 (1963). CrossRefGoogle Scholar
  6. 6.
    Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A.: A new artificial intelligence based empirical correlation to predict sonic travel time. In: International Petroleum Technology Conference. International Petroleum Technology Conference (2016)Google Scholar
  7. 7.
    Chang, C.; Zoback, M.D.; Khaksar, A.: Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 51, 223–237 (2006). CrossRefGoogle Scholar
  8. 8.
    Edlmann, K.; Somerville, J.M.; Smart, B.G.; Hamilton, S.A.; Crawford, B.R.: Predicting rock mechanical properties of clastic reservoirs from wireline porosity. Presented at the (1999)Google Scholar
  9. 9.
    Castagna, J.P.; Batzle, M.L.; Eastwood, R.L.: Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50, 571–581 (1985). CrossRefGoogle Scholar
  10. 10.
    Eskandari, H.; Rezaee, M.R.; Mohammadnia, M.: Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir, South-West Iran (2004)Google Scholar
  11. 11.
    de Augusto, F.O.A.; Martins, J.L.: A well-log regression analysis for P-wave velocity prediction in the namorado oil field, Campos basin. Rev. Bras. Geofísica. 27, 595–608 (2009). CrossRefGoogle Scholar
  12. 12.
    Brocher, T.M.: Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092 (2005). CrossRefGoogle Scholar
  13. 13.
    Brocher, T.M.: Key elements of regional seismic velocity models for long period ground motion simulations. J. Seismol. 12, 217–221 (2008). CrossRefGoogle Scholar
  14. 14.
    Carroll, R.D.: The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 6, 557–579 (1969). CrossRefGoogle Scholar
  15. 15.
    Wadhwa, R.S.; Ghosh, N.; Subba-Rao, C.: Empirical relation for estimating shear wave velocity from compressional wave velocity of rocks. J. Ind. Geophys. Union. 14, 21–30 (2010)Google Scholar
  16. 16.
    Maleki, S.; Moradzadeh, A.; Riabi, R.G.; Gholami, R.; Sadeghzadeh, F.: Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG J. Astron. Geophys. 3, 70–81 (2014). CrossRefGoogle Scholar
  17. 17.
    Tabari, K.; Tabari, O.; Tabari, M.: A fast method for estimating shear wave velocity by using neural network. Aust. J. Basic Appl. Sci. 5, 1429–1434 (2011)Google Scholar
  18. 18.
    Lindseth, R.O.: Synthetic sonic logs—a process for stratigraphic interpretation. Geophysics 44, 3–26 (1979). CrossRefGoogle Scholar
  19. 19.
    Cooke, D.A.; Schneider, W.A.: Generalized linear inversion of reflection seismic data. Geophysics 48, 665–676 (1983). CrossRefGoogle Scholar
  20. 20.
    Silva, M.B.C.; Santos, R.V.; Martins, J.L.; Fontoura, S.A.B.: Prediction of P-wave sonic logs via neural network and seismic trace inversion: a comparison. In: Offshore Technology Conference. Offshore Technology Conference (2002)Google Scholar
  21. 21.
    Elkatatny, S.M.; Zeeshan, T.; Mahmoud, M.A.: Real time prediction of drilling fluid rheological properties using artificial neural networks visible mathematical model (white box). J. Pet. Sci. Eng. 146, 1202–1210 (2016)CrossRefGoogle Scholar
  22. 22.
    Elkatatny, S.M.: Real time prediction of rheological parameters of KCl water-based drilling fluid using artificial neural networks. Arab. J. Sci. Eng. 42(4), 1655–1665 (2017)CrossRefGoogle Scholar
  23. 23.
    Elkatatny, S.M.; Mahmoud, M.: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique. Petroleum (2017). CrossRefGoogle Scholar
  24. 24.
    Elkatatny, S.M.; Mahmoud, M.: Development of a new correlation for bubble point pressure in oil reservoirs using artificial intelligent white box technique. Arab. J. Sci. Eng. (2017). CrossRefGoogle Scholar
  25. 25.
    Elkatatny, S.M.; Mahmoud, M.A.; Zeeshan, T.; Abdulraheem, A.: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligent network. Neural Comput. Appl. (2017). CrossRefGoogle Scholar
  26. 26.
    Wang, Y.; Salehi, S.: Application of real-time field data to optimize drilling hydraulics using neural network approach. J. Energy Res. Technol. 137(6), 062903 (2015)CrossRefGoogle Scholar
  27. 27.
    Salehi, S.; Hareland, G.; Dehkordi, K.K.; Ganji, M.; Abdollahi, M.: Casing collapse risk assessment and depth prediction with a neural network system approach. J. Pet. Sci. Eng. 69(1), 156–162 (2009)CrossRefGoogle Scholar
  28. 28.
    Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). CrossRefzbMATHGoogle Scholar
  29. 29.
    Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 23, 665–685 (1993). CrossRefGoogle Scholar
  30. 30.
    Fausett, L.: Fundamentals of Neural Networks Architectures, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  31. 31.
    Vineis, P.; Rainoldi, A.: Neural networks and logistic regression: analysis of a case-control study on myocardial infarction. J. Clin. Epidemiol. 50, 1309–1310 (1997). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Salaheldin Elkatatny
    • 1
    • 2
    Email author
  • Zeeshan Tariq
    • 1
  • Mohamed Mahmoud
    • 1
    • 3
  • Ibrahim Mohamed
    • 4
  • Abdulazeez Abdulraheem
    • 1
  1. 1.Department of Petroleum EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Petroleum EngineeringCairo UniversityCairoEgypt
  3. 3.Department of Petroleum EngineeringSuez UniversitySuezEgypt
  4. 4.Geomechanics EngineerAdvantek International Corp.HoustonUSA

Personalised recommendations