Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5937–5948 | Cite as

Mechanical and Thermal Properties of Multi-scale Carbon Nanotubes–Carbon Fiber–Epoxy Composite

  • Fawad Tariq
  • Madni Shifa
  • Rasheed Ahmed Baloch
Research Article - Chemical Engineering
  • 38 Downloads

Abstract

Multi-scale composite material was developed by combining carbon fabric and multi-wall carbon nanotubes (MWCNTs) in epoxy matrix. Varying concentrations of MWCNTs were ultrasonically dispersed in epoxy resin and applied on carbon fabric followed by curing. Tensile and flexural tests were conducted to observe the influence of MWCNTs on the mechanical properties of carbon fiber-reinforced plastic (CFRP). Coefficient of thermal expansion (CTE), thermal stability and glass transition temperature were determined through dilatometry, thermo-gravimetric analysis and differential scanning calorimetry, respectively. The MWCNTs dispersion in the epoxy was characterized through optical microscopy and scanning electron microscopy. Fractured surfaces of tensile samples were examined through high-resolution scanning electron microscope to investigate the failure mechanism. Tensile and flexural strengths were improved by 60 and 54%, respectively, on addition of 0.25 wt% MWCNTs in CFRP composite. This enhancement was attributed to the micro-crack bridging effect of the MWCNTs. Nanotubes acted as nano-stitches by holding the matrix together, thereby increasing the load bearing capability. Glass transition temperature and CTE of the CFRP was reduced by addition of MWCNTs whereas MWCNT–CFRP was found thermally stable up to 350 \({^{\circ }}\)C. Microscopy results showed that the nanotubes were well dispersed in the epoxy matrix. However, higher weight fraction of MWCNTs in the epoxy had promoted agglomeration.

Keywords

Carbon nanotubes Carbon fiber Multi-scale composite CFRP Crack bridging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors would like to thank Chairman (SUPARCO) for approval and financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Khan, S.U.; Kim, J.K.: Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. Int. J. Aeronaut. Space Sci. 12(2), 115–133 (2011)CrossRefGoogle Scholar
  2. 2.
    Tsantzalis, S.; Karapappas, P.; Vavouliotis, A.; Tsotra, P.; Kostopoulos, V.; Tanimoto, T.; Friedrich, K.: On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos. A Appl. Sci. Manuf. 38(4), 1159–1162 (2007)CrossRefGoogle Scholar
  3. 3.
    Yokozeki, T.; Iwahori, Y.; Ishiwata, S.; Enomoto, K.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT dispersed epoxy. Compos. A Appl. Sci. Manuf. 38(10), 2121–2130 (2007)CrossRefGoogle Scholar
  4. 4.
    Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C.: Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010)CrossRefGoogle Scholar
  5. 5.
    Fiedler, B.; Gojny, F.H.; Wichmann, M.H.G.; Nolte, M.C.M.; Schulte, K.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)CrossRefGoogle Scholar
  6. 6.
    Yokozeki, T.; Iwahori, Y.; Ishiwata, S.: Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. A Appl. Sci. Manuf. 38(3), 917–924 (2007)CrossRefGoogle Scholar
  7. 7.
    Bekyarova, E.; Thostenson, E.T.; Yu, A.; Kim, H.; Gao, J.; Tang, J.; Hahn, H.T.; Chou, T.W.; Itkis, M.E.; Haddon, R.C.: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7), 3970–3974 (2007).  https://doi.org/10.1021/la062743p CrossRefGoogle Scholar
  8. 8.
    Godara, A.; Mezzo, L.; Luizi, F.; Warrier, A.; Lomov, S.V.; Van Vuure, A.W.; Gorbatikh, L.; Moldenaers, P.; Verpoest, I.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47(12), 2914–2923 (2009)CrossRefGoogle Scholar
  9. 9.
    He, X.; Zhang, F.; Wang, R.; Liu, W.: Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers. Carbon 45(13), 2559–2563 (2007)CrossRefGoogle Scholar
  10. 10.
    Dong, L.; Hou, F.; Li, Y.; Wang, L.; Gao, H.; Tang, Y.: Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite. Compos. A Appl. Sci. Manuf. 56, 248–255 (2014)CrossRefGoogle Scholar
  11. 11.
    Yokozeki, T.; Iwahori, Y.; Ishibashi, M.; Yanagisawa, T.; Imai, K.; Arai, M.; Takahashi, T.; Enomoto, K.: Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Paper presented at the 16th International Conference on Composite Materials, JapanGoogle Scholar
  12. 12.
    Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Bauhofer, W.; Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. A Appl. Sci. Manuf. 36(11), 1525–1535 (2005)CrossRefGoogle Scholar
  13. 13.
    Kim, M.; Park, Y.-B.; Okoli, O.I.; Zhang, C.: Processing, characterization and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 69(3–4), 335–342 (2009)CrossRefGoogle Scholar
  14. 14.
    Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 157–165 (2008)CrossRefGoogle Scholar
  15. 15.
    Sui, G.; Zhong, W.H.; Liu, M.C.; Wu, P.H.: Enhancing mechanical properties of an epoxy resin using “liquid nano-reinforcements”. Mater. Sci. Eng. A 512(1–2), 139–142 (2009)CrossRefGoogle Scholar
  16. 16.
    Kepple, K.L.; Sanborn, G.P.; Lacasse, P.A.; Gruenberg, K.M.; Ready, W.J.: Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46(15), 2026–2033 (2008)CrossRefGoogle Scholar
  17. 17.
    Allaoui, A.; Bai, S.; Cheng, H.M.; Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62(15), 1993–1998 (2002)CrossRefGoogle Scholar
  18. 18.
    Inam, F.; Wong, D.W.Y.; Kuwata, M.; Peijs, T.: Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J. Nanomater. 2010(2010), 12 (2010).  https://doi.org/10.1155/2010/453420 CrossRefGoogle Scholar
  19. 19.
    Tehrani, M.; Boroujeni, A.Y.; Hartman, T.B.; Haugh, T.P.; Case, S.W.; Al-Haik, M.S.: Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube-epoxy composite. Compos. Sci. Technol. 75, 42–48 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhou, Y.; Pervin, F.; Jeelani, S.; Mallick, P.K.: Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers. J. Mater. Process. Technol. 198(1–3), 445–453 (2008)CrossRefGoogle Scholar
  21. 21.
    Rana, S.; Bhattacharyya, A.; Parveen, S.; Fangueiro, R.; Alagirusamy, R.; Joshi, M.: Development and characterization of carbon nanotube dispersed carbon/phenolic multi-scale composites. Paper presented at the International Conference on Nanoscience and Nanotechnology, Porto, PortugalGoogle Scholar
  22. 22.
    Zhang, J.W.; Jiang, D.Z.; Wang, C.Q.; Zhang, W.: Mechanical properties of hybrid of carbon nanotube and carbon fiber reinforced epoxy composites. Paper presented at the 18th International Conference on Composite Materials, Jeju Island, KoreaGoogle Scholar
  23. 23.
    Suraya, A.R.; Mazrah, S.M.Z.S.; Yunus, R.; Azowa, I.N.: Growth of carbon nanotubes on carbon fibres and the tensile properties of resulting carbon fibre reinforced polypropylene composites. J. Eng. Sci. Technol. 4(4), 400–408 (2009)Google Scholar
  24. 24.
    Davey, K.-D.S.: Development of Carbon Nanotube/Carbon Fiber Multiscale Reinforcement Composites. The Florida State University, Tallahassee (2005)Google Scholar
  25. 25.
    Subhani, T.; Shaukat, B.; Ali, N.; Khurram, A.A.: Toward improved mechanical performance of multiscale carbon fiber and carbon nanotube epoxy composites. Polym. Compos. 38(8), 1519–1528 (2017)CrossRefGoogle Scholar
  26. 26.
    Sánchez, M.; Campo, M.; Jiménez-Suárez, A.; Ureña, A.: Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos. B Eng. 45(1), 1613–1619 (2013)CrossRefGoogle Scholar
  27. 27.
    Greef, N.D.; Gorbatikh, L.; Lomov, S.V.; Verpoest, I.: Damage development in woven carbon fiber/epoxy composites modified with carbon nanotubes under tension in the bias direction. Compos. A Appl. Sci. Manuf. 42(11), 1635–1644 (2011)CrossRefGoogle Scholar
  28. 28.
    Sharma, K.; Shukla, M.: Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling. J. Nanomater. 2014(2014), 10 (2014)Google Scholar
  29. 29.
    Rana, S.; Alagirusamy, R.; Joshi, M.: Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Compos. A Appl. Sci. Manuf. 42(5), 439–445 (2011)CrossRefGoogle Scholar
  30. 30.
    Han, S.; Chung, D.D.L.: Strengthening and stiffening carbon fiber epoxy composites by halloysite nanotubes, carbon nanotubes and silicon carbide whiskers. Appl. Clay Sci. 83–84, 375–382 (2013)CrossRefGoogle Scholar
  31. 31.
    Thostenson, E.T.; Li, C.; Chou, T.-W.: Review nanocomposites in context. Compos. Sci. Technol. 65(3–4), 491–516 (2005)CrossRefGoogle Scholar
  32. 32.
    Liao, Y.-H.; Marietta-Tondin, O.; Liang, Z.; Zhang, C.; Wang, B.: Investigation of the dispersion process of SWNTs/SC-15 epoxy resin composites. Mater. Sci. Eng. A 385, 175–181 (2004)CrossRefGoogle Scholar
  33. 33.
    Yuen, S.-M.; Ma, C.-C.M.; Wu, H.-H.; Kuan, H.-C.; Chan, W.-J.; Liao, S.-H.; Hsu, C.-W.; Wu, H.-L.: Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J. Appl. Polym. Sci. 103(2), 1272–1278 (2007)CrossRefGoogle Scholar
  34. 34.
    Allaoui, A.; Bounia, N.-E.E.: How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? A review. Express Polym. Lett. 3(9), 588–594 (2009)CrossRefGoogle Scholar
  35. 35.
    Wang, Y.; Xu, Z.; Chen, L.; Jiao, Y.; Wu, X.: Multi-scale hybrid composites-based carbon nanotubes. Polym. Compos. 32(2), 159–167 (2011)CrossRefGoogle Scholar
  36. 36.
    Chang, M.S.: An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites. J. Reinf. Plast. Compos. 29(24), 3593–3599 (2010)CrossRefGoogle Scholar
  37. 37.
    Ma, P.-C.; Mo, S.-Y.; Tang, B.-Z.; Kim, J.-K.: Dispersion, interfacial interaction and reagglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6), 1824–1834 (2010)CrossRefGoogle Scholar
  38. 38.
    Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41(10), 1345–1367 (2010)CrossRefGoogle Scholar
  39. 39.
    Xie, X.-L.; Mai, Y.-W.; Zhou, X.-P.: Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R Rep. 49(4), 89–112 (2005)CrossRefGoogle Scholar
  40. 40.
    Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9), 1624–1652 (2006)CrossRefGoogle Scholar
  41. 41.
    Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)Google Scholar
  42. 42.
    Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G.: Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47(7), 1723–1737 (2009)CrossRefGoogle Scholar
  43. 43.
    Garg, P.; Singh, B.P.; Kumar, G.; Gupta, T.; Pandey, I.; Seth, R.K.; Tandon, R.P.; Mathur, R.B.: Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J. Polym. Res. 18(6), 1397–1407 (2011)CrossRefGoogle Scholar
  44. 44.
    Cui, X.; Han, B.; Zheng, Q.; Yu, X.; Dong, S.; Zhang, L.; Ou, J.: Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. A Appl. Sci. Manuf. (2017).  https://doi.org/10.1016/j.compositesa.2017.10.001 CrossRefGoogle Scholar
  45. 45.
    Hung, K.H.; Kuo, W.S.; Ko, T.H.; Tzeng, S.S.; Yan, C.F.: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibres. Compos. A Appl. Sci. Manuf. 40(8), 1299–1304 (2009)CrossRefGoogle Scholar
  46. 46.
    Frankland, S.-J.V.; Gates, T.S.; Roddick, J.C.: Multi-scale rule-of-mixtures model of carbon nanotube/carbon fiber/epoxy lamina. In: Proceedings of the Materials Research Society Symposium United States, pp. 61–70 (2006)Google Scholar
  47. 47.
    Li, M.; Gu, Y.; Liu, Y.; Li, Y.; Zhang, Z.: Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013)CrossRefGoogle Scholar
  48. 48.
    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.: Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mater. Des. 60, 34–40 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Fawad Tariq
    • 1
  • Madni Shifa
    • 1
  • Rasheed Ahmed Baloch
    • 1
  1. 1.Pakistan Space and Upper Atmosphere Research CommissionKarachiPakistan

Personalised recommendations