Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5949–5955 | Cite as

A Theoretical Mechanism Study on the Ethylenediamine Grafting on Graphene Oxides for \(\hbox {CO}_{2}\) Capture

  • Zhengcheng WenEmail author
  • Weiyin Chen
  • Yuan Li
  • Jiangrong Xu
Research Article - Chemical Engineering


The mechanism of ethylenediamine (EDA) grafting on graphene oxides (GO) for \(\hbox {CO}_{2}\) capture is investigated in detail by Quantum chemical calculation. Theoretical results show that, for epoxy on GO, EDA can be grafted via attacking activated C atoms which are adjacent to epoxy, while for carboxyl, EDA can be grafted via attacking C atom of carboxyl directly, and the grafting reaction can be catalyzed by \(\hbox {H}_{2}\hbox {O}\) and EDA. The activation energy of EDA grafting on carboxyl (23.2 kcal/mol) is lower than that on epoxy (28.6 kcal/mol), which indicates that carboxyl can be grafted more easily. Moreover, the activation energy of EDA de-grafting on carboxyl (50.7 kcal/mol) is much higher than that on epoxy (19.8 kcal/mol), which indicates that the thermal stability of EDA-carboxyl-grafted GO is much better. This illuminates that carboxyl can be grafted more effectively. The EDA grafting ability of oxygen functional groups on GO is that: carboxyl > epoxy > hydroxyl. The stronger the oxidizing ability of functional groups, the stronger the ability of amine grafting to functional groups.


GO Amine EDA \(\hbox {CO}_{2}\) capture Quantum chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (13 kb)
Supplementary material 1 (com 13 KB) (14 kb)
Supplementary material 2 (com 13 KB) (11 kb)
Supplementary material 3 (com 10 KB) (12 kb)
Supplementary material 4 (com 12 KB) (2 kb)
Supplementary material 5 (com 2 KB) (9 kb)
Supplementary material 6 (com 9 KB) (5 kb)
Supplementary material 7 (com 5 KB) (12 kb)
Supplementary material 8 (com 11 KB) (11 kb)
Supplementary material 9 (com 10 KB) (11 kb)
Supplementary material 10 (com 10 KB) (11 kb)
Supplementary material 11 (com 10 KB) (11 kb)
Supplementary material 12 (com 10 KB) (11 kb)
Supplementary material 13 (com 10 KB) (11 kb)
Supplementary material 14 (com 10 KB) (11 kb)
Supplementary material 15 (com 10 KB)


  1. 1.
    Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.: Post-combustion \(\text{ CO }_{2}\) capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)CrossRefGoogle Scholar
  2. 2.
    El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.: Aqueous amine solution characterization for post-combustion \(\text{ CO }_{2}\) capture process. Appl. Energy 185, 1433–1449 (2017)CrossRefGoogle Scholar
  3. 3.
    Goto, K.; Yogo, K.; Higashii, T.: A review of efficiency penalty in a coal-fired power plant with post-combustion \(\text{ CO }_{2}\) capture. Appl. Energy 111, 710–720 (2013)CrossRefGoogle Scholar
  4. 4.
    Sanz-Pérez, E.S.; Dantas, T.C.M.; Arencibia, A.: Reuse and recycling of amine-functionalized silica materials for \(\text{ CO }_{2}\) adsorption. Chem. Eng. J. 308(15), 1021–1033 (2017)CrossRefGoogle Scholar
  5. 5.
    Loganathan, S.; Ghoshal, A.K.: Amine tethered pore-expanded MCM-41: a promising adsorbent for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 308(15), 827–839 (2017)CrossRefGoogle Scholar
  6. 6.
    Bhagiyalakshmi, M.; Yun, L.J.; Anuradha, R.; Jang, H.T.: Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to \(\text{ CO }_{2}\) chemisorption. J. Porous Mater. 17, 475–484 (2010)CrossRefGoogle Scholar
  7. 7.
    Yang, S.T.; Kim, J.Y.; Kim, J.; et al.: \(\text{ CO }_{2}\) capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel 97, 435–442 (2012)CrossRefGoogle Scholar
  8. 8.
    Watabe, T.; Yogo, K.: Isotherms and isosteric heats of adsorption for \(\text{ CO }_{2}\) in amine-functionalized mesoporous silicas. Sep. Purif. Technol. 120, 20–23 (2013)CrossRefGoogle Scholar
  9. 9.
    Kim, J.Y.; Kim, J.; Yang, S.T.: Mesoporous SAPO-34 with amine-grafting for \(\text{ CO }_{2}\) capture. Fuel 108, 515–520 (2013)CrossRefGoogle Scholar
  10. 10.
    Srivastava, R.; Srinivas, D.; Ratnasamy, P.: Sites for \(\text{ CO }_{2}\) activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Microporous Mesoporous Mater. 90, 314–326 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, X.; Chen, L.; Guo, Q.: Development of hybrid amine-functionalized MCM-41 sorbents for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 160, 573–581 (2015)CrossRefGoogle Scholar
  12. 12.
    Linneen, N.N.; Pfeffer, R.; Lin, Y.S.: \(\text{ CO }_{2}\) adsorption performance for amine grafted particulate silica aerogels. Chem. Eng. J. 254, 190–197 (2014)CrossRefGoogle Scholar
  13. 13.
    Ko, Y.G.; Lee, H.J.; Oh, H.C.: Amines immobilized double-walled silica nanotubes for CO2 capture. J. Hazard. Mater. 250–251, 53–60 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y.; Murali, S.; Cai, W.; et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRefGoogle Scholar
  15. 15.
    Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The Chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  16. 16.
    Shanmugharaj, A.M.; Yoon, J.H.; Yang, W.J.; Ryu, S.H.: Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci. 401, 148–154 (2013)CrossRefGoogle Scholar
  17. 17.
    Sablok, K.; Bhalla, V.; Sharma, P.; Kaushal, R.; Chaudhary, S.; Suri, C.R.: Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene. J. Hazard. Mater. 248–249, 322–328 (2013)CrossRefGoogle Scholar
  18. 18.
    Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K.R.; Xu, N.: Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient \(\text{ CO }_{2}\) capture. Angew. Chem. Int. Ed. 54, 578–582 (2015)Google Scholar
  19. 19.
    Xin, Q.; Li, Z.; Li, C.: Enhancing the \(\text{ CO }_{2}\) separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. A 3, 6629–6641 (2015)CrossRefGoogle Scholar
  20. 20.
    Quan, S.; Li, S.W.; Xiao, Y.C.; Shao, L.: \(\text{ CO }_{2}\)-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable \(\text{ CO }_{2}\) capture. Int. J. Greenh. Gas Control 56, 22–29 (2017)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.; Dinga, H.; Zhong, Q.: Preparation and characterization of aminated graphite oxide for \(\text{ CO }_{2}\) capture. Appl. Surf. Sci. 258, 4301–4307 (2012)CrossRefGoogle Scholar
  22. 22.
    Kim, M.C.; Hwang, G.S.; Ruoff, R.S.: Ruoff Epoxide reduction with hydrazine on graphene: a first principles study. J. Chem. Phys. 131, 064704l (2009)CrossRefGoogle Scholar
  23. 23.
    Al-Aqtash, N.; Vasiliev, I.: Ab initio study of carboxylated graphene. J. Phys. Chem. C 113, 12970–12975 (2009)CrossRefGoogle Scholar
  24. 24.
    Lazar, P.; Karlicky, F.; Jurecka, P.; et al.: Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6327–6377 (2013)CrossRefGoogle Scholar
  25. 25.
    Gholizadeh, R.; Yu, Y.X.: N2O + CO reaction over Si- and Se-doped graphenes: an ab initio DFT study. Appl. Surf. Sci. 357, 1187–1195 (2015)CrossRefGoogle Scholar
  26. 26.
    Frisch, M.J.; Trucks, G.W.; Pople, J.A.; et al.: Gaussian 09. Gaussian, Inc, Pittsburgh (2009)Google Scholar
  27. 27.
    Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  28. 28.
    Becke, A.D.: Density functional thermochemistry III. The role of exact exchange correlation functions. J. Chem. Phys. 98(7), 5648–5652 (1993)Google Scholar
  29. 29.
    Gauss, J.; Cremer, C.: Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chem. Phys. Lett. 150(3–4), 280–286 (1988)CrossRefGoogle Scholar
  30. 30.
    Sydlik, S.A.; Swager, T.M.: Functional graphenic materials via a Jonhson–Claisen rearrangement. Adv. Funct. Mater. 23, 1873–1882 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Zhengcheng Wen
    • 1
    Email author
  • Weiyin Chen
    • 2
  • Yuan Li
    • 1
  • Jiangrong Xu
    • 1
  1. 1.College of ScienceHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Chemical EngineeringUniversity of MississippiOxfordUSA

Personalised recommendations