Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5929–5936 | Cite as

Biodiesel Production by Direct Transesterification Process via Sequential Use of Acid–Base Catalysis

  • T. M. Yunus Khan
  • Irfan Anjum Badruddin
  • R. F. Ankalgi
  • Ahmad Badarudin
  • B. S. Hungund
  • Fazal R. Ankalgi
Research Article - Chemical Engineering
  • 91 Downloads

Abstract

It is a well-known fact that energy consumption is rapidly increasing due to population growth, higher standard of living and increased production. A significant amount of energy resources are being consumed by the transportation sector leading to fast depletion of fossil fuels and environmental pollution. Biodiesel is one of the technically and economically feasible options to tackle the aforesaid problems. Biodiesel seems to be a replacement to the diesel and can be commonly produced by two-step esterification–transesterification process. In the current research, single-step process of direct transesterification method is developed and is compared with conventional two-step esterification–transesterification method. The fuel properties of biodiesel produced by these two methods have been studied. The results revealed that fuel properties of biodiesel like calorific value, kinematic viscosity, flash point, density, acid value remained similar in both methods. However, the new method developed is superior with respect to reduced reaction time, lower acid value and increased biodiesel yield. The acid value of biodiesel obtained by single-step and two-step method was found to be 0.1 and 0.25 mg KOH/g, respectively. The new method was able to reduce the reaction time from 5 to 2 h. Yield of biodiesel was increased from 2 to 5% indicating advantages of new method compared to two-step conventional method.

Keywords

Biodiesel Esterification–transesterification process Fuel properties Acid value 

Abbreviations

CPPO

Crude Pongamia pinnata oil

PPME

Pongamia pinnata methyl esters

JCME

Jatropha curcas methyl esters

CIME

Calophyllum inophyllum methyl esters

CPME

Ceiba pentandra methyl esters

NSME

Nigella sativa methyl esters

DT

Direct transesterification

ET

Esterification–transesterification

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh, S.P.; Singh, D.: Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew. Sustain. Energy Rev. 14(1), 200–216 (2010).  https://doi.org/10.1016/j.rser.2009.07.017 CrossRefGoogle Scholar
  2. 2.
    Borugadda, V.B.; Goud, V.V.: Biodiesel production from renewable feedstocks: status and opportunities. Renew. Sustain. Energy Rev. 16(7), 4763–4784 (2012)CrossRefGoogle Scholar
  3. 3.
    Khan, T.M.Y.; Atabani, A.E.; Badruddin, I.A.; Badarudin, A.; Khayoon, M.S.; Triwahyono, S.: Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew. Sustain. Energy Rev. 37, 840–851 (2014).  https://doi.org/10.1016/j.rser.2014.05.064 CrossRefGoogle Scholar
  4. 4.
    Pal, K.D.; Prakash, A.: New cost-effective method for conversion of vegetable oil to biodiesel. Bioresour. Technol. 121(0), 13–18 (2012).  https://doi.org/10.1016/j.biortech.2012.06.106 CrossRefGoogle Scholar
  5. 5.
    Thanh, L.T.; Okitsu, K.; Sadanaga, Y.; Takenaka, N.; Maeda, Y.; Bandow, H.: A new co-solvent method for the green production of biodiesel fuel—optimization and practical application. Fuel 103, 742–748 (2013).  https://doi.org/10.1016/j.fuel.2012.09.029 CrossRefGoogle Scholar
  6. 6.
    Alhassan, Y.; Kumar, N.; Bugaje, I.M.; Pali, H.S.; Kathkar, P.: Co-solvents transesterification of cotton seed oil into biodiesel: effects of reaction conditions on quality of fatty acids methyl esters. Energy Convers. Manag. 84(0), 640–648 (2014).  https://doi.org/10.1016/j.enconman.2014.04.080 CrossRefGoogle Scholar
  7. 7.
    Farobie, O.; Yanagida, T.; Matsumura, Y.: New approach of catalyst-free biodiesel production from canola oil in supercritical tert-butyl methyl ether (MTBE). Fuel 135(0), 172–181 (2014).  https://doi.org/10.1016/j.fuel.2014.06.049 CrossRefGoogle Scholar
  8. 8.
    Dawodu, F.A.; Ayodele, O.O.; Xin, J.; Zhang, S.: Dimethyl carbonate mediated production of biodiesel at different reaction temperatures. Renew. Energy 68(0), 581–587 (2014).  https://doi.org/10.1016/j.renene.2014.02.036 CrossRefGoogle Scholar
  9. 9.
    Tan, K.T.; Lee, K.T.; Mohamed, A.R.: A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via response surface methodology. Bioresour. Technol. 101(3), 965–969 (2010).  https://doi.org/10.1016/j.biortech.2009.09.004 CrossRefGoogle Scholar
  10. 10.
    Shi, H.; Bao, Z.: Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction. Bioresour. Technol. 99(18), 9025–9028 (2008).  https://doi.org/10.1016/j.biortech.2008.04.025 CrossRefGoogle Scholar
  11. 11.
    Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H.: Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89(9), 2267–2271 (2010).  https://doi.org/10.1016/j.fuel.2010.01.028 CrossRefGoogle Scholar
  12. 12.
    Hayyan, A.; Hashim, M.A.; Hayyan, M.; Mjalli, F.S.; AlNashef, I.M.: A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J. Clean. Prod. 65(0), 246–251 (2014).  https://doi.org/10.1016/j.jclepro.2013.08.031 CrossRefGoogle Scholar
  13. 13.
    Hu, S.; Wen, L.; Wang, Y.; Zheng, X.; Han, H.: Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst. Bioresour. Technol. 123(0), 413–418 (2012).  https://doi.org/10.1016/j.biortech.2012.05.143 CrossRefGoogle Scholar
  14. 14.
    Sharma, Y.; Singh, B.; Upadhyay, S.N.: Advancements in development and characterization of biodiesel: a review. Fuel 87(12), 2355–2373 (2008)CrossRefGoogle Scholar
  15. 15.
    Ginting, M.S.A.; Azizan, M.T.; Yusup, S.: Alkaline in situ ethanolysis of Jatropha curcas. Fuel 93, 82–85 (2012)CrossRefGoogle Scholar
  16. 16.
    Shi, W.; Li, J.; He, B.; Yan, F.; Cui, Z.; Wu, K.; Lin, L.; Qian, X.; Cheng, Y.: Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour. Technol. 139, 316–322 (2013)CrossRefGoogle Scholar
  17. 17.
    Chen, K.-S.; Lin, Y.-C.; Hsu, K.-H.; Wang, H.-K.: Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38(1), 151–156 (2012)CrossRefGoogle Scholar
  18. 18.
    Lin, Y.-C.; Hsu, K.-H.; Lin, J.-F.: Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst. Fuel 115, 306–311 (2014)CrossRefGoogle Scholar
  19. 19.
    Srivastava, P.; Verma, M.: Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87(8), 1673–1677 (2008)CrossRefGoogle Scholar
  20. 20.
    Sharma, Y.C.; Singh, B.; Korstad, J.: High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata). J. Agric. Food Chem. 58(1), 242–247 (2009)CrossRefGoogle Scholar
  21. 21.
    Griffiths, M.; Van Hille, R.P.; Harrison, S.T.L.: Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11), 1053–1060 (2010)CrossRefGoogle Scholar
  22. 22.
    Sahoo, P.; Das, L.M.: Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel 88(6), 994–999 (2009)CrossRefGoogle Scholar
  23. 23.
    Dhar, A.; Agarwal, A.K.: Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 119, 70–80 (2014)CrossRefGoogle Scholar
  24. 24.
    Chauhan, B.S.; Kumar, N.; Cho, H.M.; Lim, H.C.: A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy 56, 1–7 (2013)CrossRefGoogle Scholar
  25. 25.
    Thiruvengadaravi, K.; Nandagopal, J.; Baskaralingam, P.; Bala, V.S.S.; Sivanesan, S.: Acid-catalyzed esterification of karanja (Pongamia pinnata \(>\)) oil with high free fatty acids for biodiesel production. Fuel 98, 1–4 (2012)CrossRefGoogle Scholar
  26. 26.
    Naik, M.; Meher, L.C.; Naik, S.N.; Das, L.M.: Production of biodiesel from high free fatty acid Karanja Pongamia pinnata oil. Biomass Bioenergy 32(4), 354–357 (2008)CrossRefGoogle Scholar
  27. 27.
    Atabani, A.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S.: A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16(4), 2070–2093 (2012)CrossRefGoogle Scholar
  28. 28.
    Demirbas, A.: Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 50(1), 14–34 (2009)CrossRefGoogle Scholar
  29. 29.
    Tat, M.E.; Van Gerpen, J.H.: The specific gravity of biodiesel and its blends with diesel fuel. J. Am. Oil. Chem. Soc. 77(2), 115–119 (2000)CrossRefGoogle Scholar
  30. 30.
    Bahadur, N.P.; Boocock, D.G.B.; Konar, S.K.: Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: evaluation of fuel properties. Energy Fuels 9(2), 248–256 (1995)CrossRefGoogle Scholar
  31. 31.
    Wang, Y.; Liu, P.; Ou, S.; Zhang, Z.: Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers. Manag. 48(1), 184–188 (2007)CrossRefGoogle Scholar
  32. 32.
    Marchetti, J.M.: A summary of the available technologies for biodiesel production based on a comparison of different feedstock’s properties. Process Saf. Environ. Prot. 90(3), 157–163 (2012)CrossRefGoogle Scholar
  33. 33.
    Banković-Ilić, I.B.; Stamenković, O.S.; Veljković, V.B.: Biodiesel production from non-edible plant oils. Renew. Sustain. Energy Rev. 16(6), 3621–3647 (2012)CrossRefGoogle Scholar
  34. 34.
    Jain, S.; Sharma, M.P.: Biodiesel production from Jatropha curcas oil. Renew. Sustain. Energy Rev. 14(9), 3140–3147 (2010)CrossRefGoogle Scholar
  35. 35.
    Demirbas, A.: Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 49(1), 125–130 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • T. M. Yunus Khan
    • 1
  • Irfan Anjum Badruddin
    • 2
  • R. F. Ankalgi
    • 3
  • Ahmad Badarudin
    • 4
  • B. S. Hungund
    • 5
  • Fazal R. Ankalgi
    • 3
  1. 1.School of Mechanical EngineeringKLE Technological UniversityHubballiIndia
  2. 2.Department of Mechanical Engineering, College of EngineeringKing Khalid UniversityAbhaKingdom of Saudi Arabia
  3. 3.Essar Laboratories and Research CentreHubballiIndia
  4. 4.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  5. 5.Department of BiotechnologyKLE Technological UniversityHubballiIndia

Personalised recommendations