Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4689–4696 | Cite as

Effect of Pistachio Shell Particle Content on the Mechanical Properties of Polymer Composite

  • Mohamad Alsaadi
  • Ahmet Erkliğ
  • Khamis Albu-khaleefah
Research Article - Mechanical Engineering
  • 79 Downloads

Abstract

The effect of the content of microscale natural pistachio shell particles on the mechanical properties of polyester matrix composites was experimentally investigated. The pistachio shell particle contents were 0, 5, 10, 15, 20, and 25 wt%. Tensile, flexural, and Charpy impact tests were carried out on molded composite specimens according to the ISO 179/92 standard. Good dispersion of pistachio shell particles in polymer matrix was observed using SEM micrographs. The highest tensile strength, flexural strength, and impact strength were obtained at a pistachio shell particle content of 10, 5, and 5 wt%, respectively.

Keywords

Pistachio shell Composite materials Mechanical properties Particle filled Additives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sareena, C.; Ramesan, M.T.; Purushothaman, E.: Utilization of peanut shell powder as a novel filler in natural rubber. J. Appl. Polym. Sci. 125, 2322–2334 (2012)CrossRefGoogle Scholar
  2. 2.
    Thomas, S.; Joseph, K.: Polymer Composites, vol. 1, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012)CrossRefGoogle Scholar
  3. 3.
    Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E.: Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 100, 4903–4906 (2009)CrossRefGoogle Scholar
  4. 4.
    Gopinath, A.; Kumar, M.S.; Elayaperumal, A.: Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng. 97, 2052–2063 (2014)CrossRefGoogle Scholar
  5. 5.
    Ramasamy, S.; Ismail, H.; Munusamy, Y.: Tensile and morphological properties of rice husk powder filled natural rubber latex foam. Polym. Plast. Technol. Eng. 51, 1524–1529 (2012)CrossRefGoogle Scholar
  6. 6.
    Louis, N.S.; Thomas, S.: Effect of rice husk ash on mechanical properties of low density polyethylene. J. Sci. Ind. Res. 72, 441–445 (2013)Google Scholar
  7. 7.
    Pan, P.; Zhu, B.; Kai, W.; Serizawa, S.; Iji, M.; Inoue, Y.: Crystallization behavior and mechanical properties of bio-based green composites based on poly (l-lactide) and kenaf fiber. J. Appl. Polym. Sci. 105, 1511–1520 (2007)CrossRefGoogle Scholar
  8. 8.
    Sutivisedsak, N.; Cheng, H.N.; Burks, C.S.; Johnson, J.A.; Siegel, J.P.; Civerolo, E.L.; Biswas, A.: Use of nutshells as fillers in polymer composites. J. Polym. Environ. 20, 305–314 (2012)CrossRefGoogle Scholar
  9. 9.
    Gharbi, A.; Hassen, R.B.; Boufi, S.: Composite materials from unsaturated polyester resin and olive nuts residue: the effect of silane treatment. Ind. Crops Prod. 62, 491–498 (2014)CrossRefGoogle Scholar
  10. 10.
    Monteiro, S.N.; Rodriquez, R.J.; De Souza, M.V.; D’Almeida, J.R.M.: Sugar cane bagasse waste as reinforcement in low cost composites. Adv. Perform. Mater. 5, 183–191 (1998)CrossRefGoogle Scholar
  11. 11.
    Turkish Republic Ministry of Economy Sector Reports: Pistachio Shell. Ankara: Turkey (2012)Google Scholar
  12. 12.
    Ozsin, G.: Production and Characterization of Activated Carbon from Pistachio-Nut Shell. MS Thesis, Middle East Technical University, Turkey (2011)Google Scholar
  13. 13.
    Food and Agricultural Organization of United Nations (FAO) (2013). http://fao.org
  14. 14.
    Maghsoudi, H.; Khoshtaghaza, M.H.; Minaei, S.: Selected geometric characteristics, density, and mechanical properties of unsplit pistachio nut. Int. J. Food Prop. 13, 394 (2010)CrossRefGoogle Scholar
  15. 15.
    Gürü, M.; Şahin, M.; Tekeli, S.; Tokgöz, H.: Production of polymer matrix composite particleboard from pistachio shells and improvement of its fire resistance by fly ash. High Temp. Mater. Process. (London) 28, 191–195 (2009)Google Scholar
  16. 16.
    Karaağaç, B.: Use of ground pistachio shell as alternative filler in natural rubber/styrene–butadiene rubber-based rubber compounds. Polym. Compos. 35, 245–252 (2014)CrossRefGoogle Scholar
  17. 17.
    Akovali, G.: editor: Handbook of composite fabrication. iSmithers Rapra Publishing (2001)Google Scholar
  18. 18.
    Yeganeh, M.M.; Kaghazchi, T.; Soleimani, M.: Effect of raw materials on properties of activated carbons. Chem. Eng. Technol. 29, 1247–1251 (2006)CrossRefGoogle Scholar
  19. 19.
    ASTM D638-10 Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA (2010)Google Scholar
  20. 20.
    ASTM D790-10 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA (2010)Google Scholar
  21. 21.
    ISO, EN: 179-1. Plastics—determination of Charpy impact properties—Part 1: non-instrumented impact test. European Committee for Standardization. CEN, Bruxelles, Belgium (2000)Google Scholar
  22. 22.
    Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B: Eng. 39, 933–961 (2008)CrossRefGoogle Scholar
  23. 23.
    Móczó, J.; Pukánszky, B.: Polymer micro and nanocomposites: structure, interactions, properties. J. Ind. Eng. Chem. 14, 535–563 (2008)CrossRefGoogle Scholar
  24. 24.
    Patnaik, A.; Satapathy, A.; Mahapatra, S.; Dash, R.: A comparative study on different ceramic fillers affecting mechanical properties of glass—polyester composites. J. Reinf. Plast. Compos. 28, 1305–1320 (2009)CrossRefGoogle Scholar
  25. 25.
    Erkliğ, A.; Alsaadi, M.; Bulut, M.: A comparative study on industrial waste fillers affecting mechanical properties of polymer matrix composites. Mater. Res. Express 3, 105302 (2016)CrossRefGoogle Scholar
  26. 26.
    Alsaadi, M.; Erkliǧ, A.: A comparative study on mode I and mode II interlaminar behavior of borax and SiC particles toughened S-glass fabric/epoxy composite. Arab. J. Sci. Eng. 42, 4759–4769 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Materials Engineering DepartmentUniversity of TechnologyBaghdadIraq
  2. 2.Mechanical Engineering Department, Faculty of EngineeringGaziantep UniversityGaziantepTurkey

Personalised recommendations