Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4727–4737 | Cite as

Determination of Friction-Wear Performance and Properties of Eco-Friendly Brake Pads Reinforced with Hazelnut Shell and Boron Dusts

  • G. Akıncıoğlu
  • H. Öktem
  • I. Uygur
  • S. Akıncıoğlu
Research Article - Mechanical Engineering
  • 90 Downloads

Abstract

Brake pads are the most important component of an automobile braking system. In recent studies, brake pads have been produced by varying the constituents of existing compositions and by making new formulations with other friction materials. This study evaluated two sets of asbestos-free automotive brake pads produced from boron oxide (6%) and hazelnut shell (7%) dusts and seventeen other components. All ingredients were mixed and pressed to manufacture the sample eco-friendly brake pads in the same shape as commercial Clio pads. Hardness, porosity, compressibility, shear and wear tests were carried out on the samples, and the test results were compared with those of the commercial pad.

Keywords

Brake pads Boron oxide Hazelnut shell dust Compressibility test Shear testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the Scientific Research Project Unit of Duzce University (DÜBAP-2015/72). The authors would like to thank Kale Balata A.Ş. (Kale Brake Pad Factory) Kocaeli/Turkey.

References

  1. 1.
    El-Tayeb, N.; Liew, K.: On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry. Wear 266(1), 275–287 (2009)CrossRefGoogle Scholar
  2. 2.
    Fan, Y.; Matějka, V.; Kratošová, G.; Lu, Y.: Role of \({\rm Al}_{2}{\rm O}_{3}\) in semi-metallic friction materials and its effects on friction and wear performance. Tribol. Trans. 51(6), 771–778 (2008)CrossRefGoogle Scholar
  3. 3.
    Liew, K.; Nirmal, U.: Frictional performance evaluation of newly designed brake pad materials. Mater. Des. 48, 25–33 (2013)CrossRefGoogle Scholar
  4. 4.
    Ertan, R.; Yavuz, N.: An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials. Wear 268(11), 1524–1532 (2010)CrossRefGoogle Scholar
  5. 5.
    Hee, K.; Filip, P.: Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear 259(7), 1088–1096 (2005)CrossRefGoogle Scholar
  6. 6.
    Kumar, M.; Bijwe, J.: Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient-temperature sensitivity in brake materials. Wear 269(11), 838–846 (2010)CrossRefGoogle Scholar
  7. 7.
    Hjortenkrans, D.; Bergbäck, B.; Häggerud, A.: New metal emission patterns in road traffic environments. Environ. Monit. Assess. 117(1–3), 85–98 (2006)CrossRefGoogle Scholar
  8. 8.
    Menapace, C.; Leonardi, M.; Perricone, G.; Bortolotti, M.; Straffelini, G.; Gialanella, S.: Pin-on-disc study of brake friction materials with ball-milled nanostructured components. Mater. Des. 115, 287–298 (2017)CrossRefGoogle Scholar
  9. 9.
    Hong, U.; Jung, S.; Cho, K.; Cho, M.; Kim, S.; Jang, H.: Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 266(7), 739–744 (2009)CrossRefGoogle Scholar
  10. 10.
    Chan, D.; Stachowiak, G.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(9), 953–966 (2004)CrossRefGoogle Scholar
  11. 11.
    Jacko, M.; Tsang, P.; Rhee, S.: Automotive friction materials evolution during the past decade. Wear 100(1–3), 503–515 (1984)CrossRefGoogle Scholar
  12. 12.
    Idris, U.; Aigbodion, V.; Abubakar, I.; Nwoye, C.: Eco-friendly asbestos free brake-pad: using banana peels. J. King Saud Univ. Eng. Sci. 27(2), 185–192 (2015)Google Scholar
  13. 13.
    Lazim, A.M.; Kchaou, M.; Hamid, M.A.; Bakar, A.A.: Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers. Wear 358, 123–136 (2016)CrossRefGoogle Scholar
  14. 14.
    Ikpambese, K.; Gundu, D.; Tuleun, L.: Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 28(1), 110–118 (2016)Google Scholar
  15. 15.
    Ghazali, C.M.R.; Kamarudin, H.; Shamsul, J.; Abdullah, M.; Rafiza, A.: Mechanical properties and wear behavior of brake pads produced from palm slag. Adv. Mater. Res. 341, 26–30 (2012)Google Scholar
  16. 16.
    Aku, S.; Yawas, D.; Madakson, P.; Amaren, S.: Characterization of periwinkle shell as asbestos-free brake pad materials. Pac. J. Sci. Technol. 13(2), 57–63 (2012)Google Scholar
  17. 17.
    Öktem, H.; Uygur, İ.; Akıncıoğlu, G.; Kır, D.; Karakaş, H.: Evaluation of non-asbestos high performance brake pads produced with organic dusts. In: Paper Presented at the Metal 2015. Brno, Czech Republic, June 3rd–5th (2015)Google Scholar
  18. 18.
    ISO 6312: Road vehicles–Brake Linings-Shear Test Procedure for Disc Brake Pad and Drum Brake Shoe Assemblies, vol. 3, pp. 1–11. ISO TC 22/SC 2/WG 2, Switzerland (2010)Google Scholar
  19. 19.
    ASTM D570-98: Standard Test Method for Water Absorption of Plastics, pp. 1–4. ASTM International, United States (1999)Google Scholar
  20. 20.
    Qi, S.; Fu, Z.; Yun, R.; Jiang, S.; Zheng, X.; Lu, Y.; Matejka, V.; Kukutschova, J.; Peknikova, V.; Prikasky, M.: Effects of walnut shells on friction and wear performance of eco-friendly brake friction composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 228(5), 511–520 (2014)CrossRefGoogle Scholar
  21. 21.
    Mutlu, I.; Oner, C.; Findik, F.: Boric acid effect in phenolic composites on tribological properties in brake linings. Mater. Des. 28(2), 480–487 (2007)CrossRefGoogle Scholar
  22. 22.
    Erikssona, M.; Lord, J.; Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001)CrossRefGoogle Scholar
  23. 23.
    Maleque, M.; Atiqah, A.; Talib, R.; Zahurin, H.: New natural fibre reinforced aluminium composite for automotive brake pad. Int. J. Mech. Mater. Eng. 7(2), 166–170 (2012)Google Scholar
  24. 24.
    Kumar, M.; Satapathy, B.K.; Patnaik, A.; Kolluri, D.K.; Tomar, B.S.: Evaluation of fade-recovery performance of hybrid friction composites based on ternary combination of ceramic-fibers, ceramic-whiskers, and aramid-fibers. J. Appl. Polym. Sci. 124(5), 3650–3661 (2012)CrossRefGoogle Scholar
  25. 25.
    Singh, T.; Patnaik, A.; Chauhan, R.: Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Mater. Des. 89, 1335–1342 (2016)CrossRefGoogle Scholar
  26. 26.
    Kachhap, R.K.; Satapathy, B.K.: Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials. Mater. Des. 56, 368–378 (2014)CrossRefGoogle Scholar
  27. 27.
    Nagesh, S.N.; Siddaraju, C.; Prakash, S.V.; Ramesh, M.R.: Characterization of brake pads by variation in composition of friction materials. Procedia Mater. Sci. 5, 295–302 (2014)CrossRefGoogle Scholar
  28. 28.
    Milenković, P.D.; Jovanović, S.J.; Janković, A.S.; Milovanović, M.D.; Vitošević, N.D.; Đorđević, M.V.; Raičević, M.M.: The influence of brake pads thermal conductivity on passenger car brake system efficiency. Therm. Sci. 14(suppl.), 221–230 (2010)CrossRefGoogle Scholar
  29. 29.
    Chan, D.; Stachowiak, G.W.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(9), 953–966 (2004)CrossRefGoogle Scholar
  30. 30.
    Lee, K.; Barber, J.R.: Frictionally excited thermoelastic instability in automotive disk brakes. J. Tribol. 115(4), 607–614 (1993)CrossRefGoogle Scholar
  31. 31.
    Fu, Z.; Suo, B.; Yun, R.; Lu, Y.; Wang, H.; Qi, S.; Jiang, S.; Lu, Y.; Matejka, V.: Development of eco-friendly brake friction composites containing flax fibers. J. Reinf. Plast. Compos. 31(10), 681–689 (2012)CrossRefGoogle Scholar
  32. 32.
    Avtomobılskıh, O.P.T.I.O.; Prahom, Z.O.Z.U.I.; Indıjskega, I.: Friction and wear behaviour of ulexite and cashew in automotive brake pads. Materiali in tehnologije 49(5), 751–758 (2015)CrossRefGoogle Scholar
  33. 33.
    Xiao, X.; Yin, Y.; Bao, J.; Lu, L.; Feng, X.: Review on the friction and wear of brake materials. Adv. Mech. Eng. 8(5), 1687814016647300 (2016)CrossRefGoogle Scholar
  34. 34.
    Lagel, M.C.; Hai, L.; Pizzi, A.; Basso, M.C.; Delmotte, L.; Abdalla, S.; Zahed, A.; Al-Marzouki, F.M.: Automotive brake pads made with a bioresin matrix. Ind. Crops Prod. 85, 372–381 (2016)CrossRefGoogle Scholar
  35. 35.
    Kumar, M.; Bijwe, J.: Non-asbestos organic (NAO) friction composites: role of copper; its shape and amount. Wear 270(3), 269–280 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Düzce UniversityDüzceTurkey
  2. 2.Kocaeli UniversityKocaeliTurkey
  3. 3.Düzce UniversityDüzceTurkey

Personalised recommendations