Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4697–4702 | Cite as

Mechanical Properties and the Characterization of Polyacrylonitrile/Carbon Nanotube Composite Nanofiber

  • Shrouk A. Karim
  • Alaa Mohamed
  • M. M. Abdel-Mottaleb
  • T. A. Osman
  • A. Khattab
Research Article - Mechanical Engineering

Abstract

This work describes the fabrication of the composite nanofibers containing polyacrylonitrile polymer (PAN) and different weight percentage of carbon nanotubes (CNTs) using electrospinning technique which is simplest and highly versatile method to enhance the mechanical properties by removing the surface defects of the composite nanofibers. The tensile test, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements are used to find the mechanical properties and the characterization of PAN/CNT composite nanofibers. The result demonstrated that adding CNTs to the polymer enhances the mechanical properties like tensile strengths and Young’s modulus with an average 55 and 60 %, respectively at only 0.1 wt% of CNTs.

Keywords

Composite nanofibers Mechanical properties Electrospinning Tensile strengths Young’s modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumbar, S.G.; James, R.; Nukavarapu, S.P.; Laurencin, C.T.: Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater. 3(3), 034002 (2008)CrossRefGoogle Scholar
  2. 2.
    Han, T.; Reneker, D.H.; Yarin, A.L.: Buckling of jets in electrospinning. Polymer 48(20), 6064–6076 (2007)CrossRefGoogle Scholar
  3. 3.
    Mohamed, A.; Nasser, W.S.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J. Colloid Interface Sci. 505, 682–691 (2017)CrossRefGoogle Scholar
  4. 4.
    Reneker, D.H.; Yarin, A.L.: Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387–2425 (2008)CrossRefGoogle Scholar
  5. 5.
    Kamel, B.M.; Mohamed, A.; El-Sherbiny, M.; Abed, K.A.; Abd-Rabou, M.: Rheological characteristics of modified calcium grease with graphene nanosheets. Fuller. Nanotub. Carbon Nanostruct. 25(7), 429–434 (2017)CrossRefGoogle Scholar
  6. 6.
    Bhardwaj, N.; Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–47 (2010)CrossRefGoogle Scholar
  7. 7.
    Aryal, S.; Kim, C.K.; Kim, K.-W.; Khil, M.S.; Kim, H.Y.: Multi-walled carbon nanotubes/\(TiO_{2}\) composite nanofiber by electrospinning. Mater. Sci. Eng. C 28(1), 75–79 (2008)CrossRefGoogle Scholar
  8. 8.
    Mohamed, A.; Khattab, A.A.; Osman, T.A.S.; Zaki, M.: Rheological behavior of carbon nanotubes as an additive on lithium grease. J. Nanotechnol. 2013, 1–4 (2013)CrossRefGoogle Scholar
  9. 9.
    Park, C.; Ounaies, Z.; Watson, K.A; Pawlowski, K.; Lowther, S.E.; Connell, J.W.; Siochi, E.J.; Harrison, J.S.; St. Clair, T.L.: Polymer-single wall carbon nanotube composites for potential spacecraft applications. Mat. Res. Soc. Symp. Proc. 706, 1–6 (2002)Google Scholar
  10. 10.
    Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S.: Electrospinning of nanofibers. J. Appl. Polym. Sci. 96(2), 557–569 (2005)CrossRefGoogle Scholar
  11. 11.
    Kamel, B.M.; Mohamed, A.; El Sherbiny, M.; Abed, K.A.: Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct. 24(4), 260–265 (2016)CrossRefGoogle Scholar
  12. 12.
    Thostenson, E.T.; Ren, Z.; Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  13. 13.
    Yousef, S.; Mohamed, A.: Mass production of CNTs using CVD multi-quartz tubes. J. Mech. Sci. Technol. 30(11), 5135–5141 (2016)CrossRefGoogle Scholar
  14. 14.
    Mohamed, A.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Yilmaz, E.; Uheida, A.: Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers. J. Mol. Catal. A Chem. 424, 45–53 (2016)CrossRefGoogle Scholar
  15. 15.
    Hou, H.; Ge, J.J.; Greiner, A.; Zeng, J.; Li, Q.; Reneker, D.H.; Cheng, A.S.Z.D.: Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17, 967–973 (2005)CrossRefGoogle Scholar
  16. 16.
    Mohamed, A.; Hamdy, M.; Bayoumi, M.; Osman, T.: Experimental investigations of rheological behaviour and thermal conductivity of nanogrease. Ind. Lubr. Tribol. 69(4), 559–565 (2017)CrossRefGoogle Scholar
  17. 17.
    Prilutsky, S.; Zussman, E.; Cohen, Y.: The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology 19(16), 165603 (2008)CrossRefGoogle Scholar
  18. 18.
    Kamel, B.M.; Mohamed, A.; El Sherbiny, M.; Abed, K.A.: Tribological behaviour of calcium grease containing carbon nanotubes additives. Ind. Lubr. Tribol. 68(6), 723–728 (2016)CrossRefGoogle Scholar
  19. 19.
    Kamel, B.M.; Mohamed, A.; El Sherbiny, M.; Abed, K.A.; Abd-Rabou, M.: Tribological properties of graphene nanosheets as an additive in calcium grease. J. Dispers. Sci. Technol. 38(10), 1495–1500 (2016)CrossRefGoogle Scholar
  20. 20.
    Mohamed, A.; El-Sayed, R.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ. Res. 145, 18–25 (2016)CrossRefGoogle Scholar
  21. 21.
    Mohamed, A.; Osman, T.A.; Khattab, A.; Zaki, M.: Tribological behavior of carbon nanotubes as an additive on lithium grease. J. Tribol. 137(1), 011801 (2014)CrossRefGoogle Scholar
  22. 22.
    Khalil, W.; Mohamed, A.; Bayoumi, M.; Osman, T.A.: Tribological properties of dispersed carbon nanotubes in lubricant. Fuller. Nanotub. Carbon Nanostruct. 24(7), 479–485 (2016)CrossRefGoogle Scholar
  23. 23.
    Mohamed, A.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere 180, 108–116 (2017)CrossRefGoogle Scholar
  24. 24.
    Khalil, W.; Mohamed, A.; Bayoumi, M.; Osman, T.A.: Thermal and Rheological properties of industrial mineral gear oil and paraffinic oil/CNTs nanolubricants. Iran. J. Sci. Technol. Trans. Mech. Eng. (2017).  https://doi.org/10.1007/s40997-017-0103-3
  25. 25.
    International A.: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, vol. D 3039/D 3039M–00 pp. 1-13. West Conshohocken (2000)Google Scholar
  26. 26.
    Mohamed, A.; Yousef, S.; Abdelnaby, M.Ali; Osman, T.A.; Hamawandi, B.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Sep. Purif. Technol. 182, 219–223 (2017)CrossRefGoogle Scholar
  27. 27.
    Moon, S.; Emrick, T.: High flame resistant and strong electrospun polyacrylonitrile–carbon nanotubes-ochre nanofibers. Polymer 54(7), 1813–1819 (2013)CrossRefGoogle Scholar
  28. 28.
    Lu, P.; Hsieh, Y.L.: Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning. ACS Appl. Mater. Interfaces 2(8), 2413–20 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Production Engineering and Printing Technology DepartmentAkhbar El Yom AcademyGizaEgypt
  2. 2.Egypt Nanotechnology Center, EGNCCairo UniversityGizaEgypt
  3. 3.Mechanical Design and Production Engineering DepartmentCairo UniversityGizaEgypt

Personalised recommendations