Advertisement

A Blind, Semi-Fragile 3D mesh Watermarking Algorithm Using Minimum Distortion Angle Quantization Index Modulation (3D-MDAQIM)

  • Sagarika BorahEmail author
  • Bhogeswar Borah
Research Article - Computer Engineering and Computer Science
  • 28 Downloads

Abstract

This work proposes a semi-fragile, blind watermarking scheme in spatial domain to substantiate the authenticity of 3D models. The 3D mesh is first traversed with a topology-oriented strategy which also decides the verification units. Every verification unit comprises of a set of embedding eligible vertices and one verification code embeddable vertex. Watermark embedding is carried out by first applying dither modulation to the spherical angular values theta \((\theta )\) and phi \((\phi )\) of the embedding eligible vertices. During the process of dithering, the angular values are quantized with 3D-MDAQIM using quantization step sizes \(\varDelta _\theta \) and \(\varDelta _\phi \) that incurs minimum distortion. A theoretical analysis is conducted to present the imperceptibility assessment. In order to verify the integrity of the 3D model, verification bits are computed from the local geometry of the mesh and embedded to the respective embeddable vertices using message digit substitution scheme. Further more, experimental results show that the proposed method yields minimal distortion with regional attack localization capability. This work performs better than the state-of-the-art semi-fragile mesh watermarking algorithms in terms of embedding capacity, robustness toward content-preserving attacks and distortion control.

Keywords

3D mesh Mesh watermarking Fragile watermarking Mesh verification Quantization index modulation Authentication Chaotic map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liao, X.; Qin, Z.; Ding, L.: Data embedding in digital images using critical functions. Signal Process. Image Commun. 58, 146–156 (2017)CrossRefGoogle Scholar
  2. 2.
    Al-Haj, A.M.: Advanced Techniques in Multimedia Watermarking: Image, Video and Audio Applications–Image, Video and Audio Applications. IGI Global, Hershey (2010)CrossRefGoogle Scholar
  3. 3.
    Liao, X.; Yin, J.; Guo, S.; Li, X.; Sangaiah, A.K.: Medical JPEG image steganography based on preserving inter-block dependencies. Comput. Electr. Eng. 67, 320–329 (2018)CrossRefGoogle Scholar
  4. 4.
    Medimegh, N.; Belaid, S.; Werghi, N.: A survey of the 3d triangular mesh watermarking techniques. Int J Multimed (2015).  https://doi.org/10.16966/ijm.102
  5. 5.
    Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.: A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans. Multimed. 10(8), 1513–1527 (2008a)CrossRefGoogle Scholar
  6. 6.
    Wang, J.T.; Chang, Y.C.; Yu, C.Y.; Yu, S.S.: Hamming code based watermarking scheme for 3d model verification. Math. Prob. Eng. (2014a).  https://doi.org/10.1155/2014/241093
  7. 7.
    Tsai, Y.Y.; Cheng, T.C.; Huang, Y.H.: A low-complexity region-based authentication algorithm for 3d polygonal models. Secur. Commun. Netw. (2017).  https://doi.org/10.1155/2017/1096463
  8. 8.
    Wang, W.B.; Zheng, G.Q.; Yong, J.H.; Gu, H.J.: A numerically stable fragile watermarking scheme for authenticating 3d models. Comput. Aided Des. 40(5), 634–645 (2008b)CrossRefGoogle Scholar
  9. 9.
    Chou, C.M.; Tseng, D.C.: Affine-transformation-invariant public fragile watermarking for 3d model authentication. IEEE Comput. Gr. Appl. 29(2), 72–79 (2009)CrossRefGoogle Scholar
  10. 10.
    Molaei, A.M.; Ebrahimnezhad, H.; Sedaaghi, M.H.: A blind fragile watermarking method for 3d models based on geometric properties of triangles. 3D Res. 4(4), 1–9 (2013)CrossRefGoogle Scholar
  11. 11.
    Lin, H.Y.; Liao, H.Y.; Lu, C.S.; Lin, J.C.: Fragile watermarking for authenticating 3-d polygonal meshes. IEEE Trans. Multimed. 7(6), 997–1006 (2005)CrossRefGoogle Scholar
  12. 12.
    Wu, H.T.; Cheung, Y.M.: A reversible data hiding approach to mesh authentication. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), IEEE, pp. 774–777 (2005)Google Scholar
  13. 13.
    Wu, H.T.; Cheung, Y.M.: Reversible watermarking by modulation and security enhancement. IEEE Trans. Instrum. Meas. 59(1), 221–228 (2010)CrossRefGoogle Scholar
  14. 14.
    Xu, T.; Cai, Z.G.: A novel semi-fragile watermarking algorithm for 3d mesh models. In: 2012 International Conference on Control Engineering and Communication Technology (ICCECT), IEEE, pp. 782–785 (2012)Google Scholar
  15. 15.
    Huang, C.C.; Yang, Y.W.; Fan, C.M.; Wang, J.T.: A spherical coordinate based fragile watermarking scheme for 3d models. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer, pp 566–571 (2013)Google Scholar
  16. 16.
    Yeo, B.L.; Yeung, M.M.: Watermarking 3d objects for verification. IEEE Comput. Gr. Appl. 19(1), 36–45 (1999)CrossRefGoogle Scholar
  17. 17.
    Chou, C.M.; Tseng, D.C.: A public fragile watermarking scheme for 3d model authentication. Comput. Aided Des. 38(11), 1154–1165 (2006)CrossRefGoogle Scholar
  18. 18.
    Chen, T.Y.; Hwang, M.S.; Jan, J.K.: Adaptive authentication schemes for 3d mesh models. Int. J. Innov. Comput. Inf. Control 5(12), 4561–4572 (2009)Google Scholar
  19. 19.
    Wang, J.T.; Fan, C.M.; Huang, C.C.; Li, C.C.: Error detecting code based fragile watermarking scheme for 3d models. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp. 1099–1102 (2014b)Google Scholar
  20. 20.
    Wang, J.T.; Yang, W.H.; Wang, P.C.; Chang, Y.T.: A novel chaos sequence based 3d fragile watermarking scheme. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp. 745–748 (2014c)Google Scholar
  21. 21.
    Wang, J.T.; Chang, Y.C.; Lu, C.W.; Yu, S.S.: An OFB-based fragile watermarking scheme for 3d polygonal meshes. In: 2016 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp 291–294 (2016)Google Scholar
  22. 22.
    Vasic, B.; Vasic, B.: Simplification resilient IDPC-coded sparse-qim watermarking for 3d-meshes. IEEE Trans. Multimed. 15(7), 1532–1542 (2013)CrossRefGoogle Scholar
  23. 23.
    Youssef, A.E.; Sheta, W.: Using chaotic 3d watermarking for game design copy right protection. In: 2012 17th International Conference on Computer Games (CGAMES), IEEE, pp. 221–229 (2012)Google Scholar
  24. 24.
    Yz, Zhan; Yt, Li; Xy, Wang; Qian, Y.: A blind watermarking algorithm for 3d mesh models based on vertex curvature. J. Zhejiang Univ. Sci. C 15(5), 351–362 (2014)Google Scholar
  25. 25.
    Bajaj, C.L.; Pascucci, V.; Zhuang, G.: Single resolution compression of arbitrary triangular meshes with properties1. Comput. Geom. 14(1–3), 167–186 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zafeiriou, S.; Tefas, A.; Pitas, I.: Blind robust watermarking schemes for copyright protection of 3d mesh objects. IEEE Trans. Vis. Comput. Gr. 11(5), 596–607 (2005)CrossRefGoogle Scholar
  27. 27.
    Huang, Y.H.; Tsai, Y.Y.: A reversible data hiding scheme for 3d polygonal models based on histogram shifting with high embedding capacity. 3D Res. 6(2), 1–12 (2015)CrossRefGoogle Scholar
  28. 28.
    Ourique, F.; Licks, V.; Jordan, R.; Pérez-González, F.: Angle qim: A novel watermark embedding scheme robust against amplitude scaling distortions. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP’05), IEEE, vol. 2, pp. 2–797 (2005)Google Scholar
  29. 29.
    Wang, Y.G.; Zhu, G.: An improved aqim watermarking method with minimum-distortion angle quantization and amplitude projection strategy. Inf. Sci. 316, 40–53 (2015)CrossRefzbMATHGoogle Scholar
  30. 30.
    Nezhadarya, E.; Wang, Z.J.; Ward, R.K.: Robust image watermarking based on multiscale gradient direction quantization. IEEE Trans. Inf. Forensics Secur. 6(4), 1200–1213 (2011)CrossRefGoogle Scholar
  31. 31.
    Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.: Robust and blind mesh watermarking based on volume moments. Comput. Gr. 35(1), 1–19 (2011)CrossRefGoogle Scholar
  32. 32.
    Li, H.; Sun, Z.; He, M.; Ma, W.: A mesh watermarking method based on local roughness analysis. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, pp 379–383 (2015)Google Scholar
  33. 33.
    Lavoué, G.; Gelasca, E.D.; Dupont, F.; Baskurt, A.; Ebrahimi, T.: Perceptually driven 3d distance metrics with application to watermarking. In: SPIE Optics+ Photonics, International Society for Optics and Photonics, pp 63,120L (2006)Google Scholar
  34. 34.
    Wang, K.; Torkhani, F.; Montanvert, A.: A fast roughness-based approach to the assessment of 3d mesh visual quality. Comput. Gr. 36(7), 808–818 (2012b)CrossRefGoogle Scholar
  35. 35.
    Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.; He, X.: A benchmark for 3d mesh watermarking. In: 2010 Shape Modeling International Conference, IEEE, pp. 231–235 (2010)Google Scholar
  36. 36.
    Lavoué, G.; Tola, M.; Dupont, F.; Lavou, G.: Mepp-3d mesh processing platform. In: GRAPP/IVAPP, pp 206–210 (2012)Google Scholar
  37. 37.
    Wang, J.; Feng, J.; Miao, Y.: A robust confirmable watermarking algorithm for 3d mesh based on manifold harmonics analysis. Vis. Comput. 28(11), 1049–1062 (2012a)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringTezpur UniversityTezpurIndia

Personalised recommendations