Advertisement

Effects of Heat Source Positions on Temperature Uniformity of Large Vapor Chamber Antigravity Flat Plate Heat Pipe

  • Bin LiuEmail author
  • Hao Li
  • Kuining Li
  • Qianqian Meng
  • Cheng Yang
  • Chunyun Fu
Research Article - Physics
  • 9 Downloads

Abstract

In this paper, a large vapor chamber antigravity flat plate heat pipe (FPHP) for laptop cooling is proposed. Effects of heat source positions on temperature uniformity of the FPHP are studied experimentally. The temperature uniformity of the large vapor chamber antigravity FPHP is analyzed on the conditions of different heat source positions (six positions), different heat power inputs of 20 W, 30 W, 40 W, 50 W and different liquid filling ratios of 35%, 45%, 55%. The experimental results show that the standard deviation and the maximum temperature difference at the best filling rate 45% are lower than those of other filling rates, and the standard deviations are \(1.2~{^{\circ }}\hbox {C}\)\(3~{^{\circ }}\hbox {C}\), and the maximum temperature differences are \(6.3~{^{\circ }}\hbox {C}\)\(9.6~{^{\circ }}\hbox {C}\), which can meet the cooling requirement of the laptop. The best effective heat transport length in the FPHP is 0.094 m.

Keywords

Temperature uniformity Flat plate heat pipe Heat source position Filling ratio Effective heat transport length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunn, P.D.; Reay, D.A.: Heat Pipes, 3rd edn. Pergamon Press, New York (1982)Google Scholar
  2. 2.
    Yu, W.; Xu, K.; Li, B.; Zhang, G.: Establishing the mathematic model of heat transfer by calculated fluid hydrodynamics for the heat pipe bioreactor. Chem. Eng. 32(4), 20–23 (2004)Google Scholar
  3. 3.
    Yuhui, P.; Suyi, H.; Kunjian, H.: Experimental study on thermosyphon by adding nanoparticles to working fluid. J. Chem. Ind. Eng. (China) 55(11), 1768–1772 (2004)Google Scholar
  4. 4.
    Nguyen, T.; Mochizuki, M.; Mashko, K.; et al.: Use of heat pipe/heat sink for thermal management of high performance CPUs. In: 16th IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). IEEE, Piscataway (2000)Google Scholar
  5. 5.
    Tao, L.; Cheng, L.; Cao, H.; Qu, Y.: Effects of heat sources on heat transfer of axially grooved heat pipe. J. Chem. Ind. Eng. (China) 58(04), 848–853 (2007)Google Scholar
  6. 6.
    Hu, C.F.; Jia, L.: Experimental study on the startup performance of flat plate pulsating heat pipe. J. Therm. Sci. 20(2), 150–154 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, W.; ZhongLiang, L.; GuangMeng, Z.; Ming, Z.: An experimental study of flat plate heat pipe with interlaced micro grooves. J. Eng. Thermophys. 09, 1567–1570 (2011)Google Scholar
  8. 8.
    Wang, S.; Chen, J.; Hu, Y.; Zhang, W.: Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe. Appl. Therm. Eng 31(14–15), 2367–2373 (2011)CrossRefGoogle Scholar
  9. 9.
    Rulliere, R.; Lefèvre, F.; Lallemand, M.: Experimental study of two-phase heat spreaders for PEMFC cooling application. In: 14th IHPC, Florianopolis, Brazil, April 22–27 (2007)Google Scholar
  10. 10.
    Chen, J.-S.; Chou, J.-H.: Cooling performance of flat plate heat pipes with different liquid filling ratios. Int. J. Heat Mass Transf. 77, 874–882 (2014)CrossRefGoogle Scholar
  11. 11.
    Avenas, Y.; Ivanova, M.; Popova, N.; Schaeffer, C.; Schanen, J.L.: Thermal analysis of thermal spreaders used in power electronics cooling. In: Industry Applications Conference, 37th IAS Annual Meeting, vol. 1, pp. 216–219 (2002)Google Scholar
  12. 12.
    Wong, S.-C.; Chen, C.-W.: Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator. Int. J. Heat Mass Transf. 66, 396–403 (2013)CrossRefGoogle Scholar
  13. 13.
    Xianbing, J.: Investigation on temperature uniformity of flat plate heat pipes with ultra-light porous metal foam wicks. Proc. CSEE 33(2), 72–78 (2013)Google Scholar
  14. 14.
    Zhang, L.; Ma, T.; Zhang, Z.; Ge, X.: Experimental investigation on thermal characteristics of flat miniature axially grooved heat pipes. J. Eng. Thermophys. 24(4), 493–495 (2003)Google Scholar
  15. 15.
    Zhang, L.; Ma, T.; Ge, X.: Theoretical analysis of temperature uniformity of the micro plate heat pipe with rectangular grooves. J. Eng. Thermophys. 25, 143–146 (2005)Google Scholar
  16. 16.
    Zhang, L.; Ma, T.; Zhang, Z.; Ge, X.: Experimental investigation on miniature heat pipe with swallow-tailed grooves. J. Eng. Thermophys. 25(4), 493–495 (2004)Google Scholar
  17. 17.
    Ismail, K.A.R.; Zanardi, M.A.; Analytical and numerical study on heat pipes of rectangular section and sintered wicks. In: 3o IHPS, vol. 1, pp. 134–138 (1988)Google Scholar
  18. 18.
    Ismail, K.A.R.; Zanardi, M.A.: Heat and flow analysis in a rectangular duct with bottom and top porous walls. In: International Symposium on Transport Phenomena in Heat and MASS Transfer, vol. 2, pp. 593–6041991 (1991)Google Scholar
  19. 19.
    Ismail, K.A.R.; Zanardi, M.A.: Experimental verification of a two dimensional model for porous wicked heat pipes. Exp. Heat Transf. Fluid Mech. Thermodyn. 7(2), 427–432 (1993)Google Scholar
  20. 20.
    Ismail, K.A.R.; Zanardi, M.A.: A steady-state model for heat pipes of circular or rectangular cross-sections. Appl. Therm. Eng. 16(8–9), 753–767 (1996)CrossRefGoogle Scholar
  21. 21.
    Tan, B.K.; Wong, T.N.; Ooi, K.T.: Analytical effective length study of a flat plate heat pipe using point source approach. Appl. Therm. Eng. 25, 2272–2284 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Bin Liu
    • 1
    Email author
  • Hao Li
    • 1
  • Kuining Li
    • 1
  • Qianqian Meng
    • 1
  • Cheng Yang
    • 1
  • Chunyun Fu
    • 2
  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, School of Energy and Power EngineeringChongqing UniversityChongqingChina
  2. 2.State Key Laboratory of Mechanical Transmissions, School of Automotive EngineeringChongqing UniversityChongqingChina

Personalised recommendations