Advertisement

Effect of Strontium Doping on the Band Gap of \(\hbox {CeO}_{2}\) Nanoparticles Synthesized Using Facile Co-precipitation

  • Shah Raj Ali
  • Rajesh Kumar
  • Abul Kalam
  • Abdullah G. Al-Sehemi
  • Mahesh Chandra AryaEmail author
Research Article - Chemistry
  • 9 Downloads

Abstract

Pure, 3 mol% and 5 mol% Sr-doped cerium oxide nanoparticles were synthesized by facile aqueous co-precipitation method using cerium nitrate hexahydrate and strontium chloride hexahydrate as the precursors without using any capping agent. The synthesized material was characterized by XRD, SEM, EDX, TEM, Raman spectroscopy and UV–Vis spectroscopic techniques. SEM analysis showed agglomeration of the particles. The Debye–Scherrer analysis revealed fluorite structure of the synthesized material with crystallite size in 6–10 nm range. TEM confirmed the spherical morphology of the particles and particle size distribution in the range of 5–8 nm. UV–Vis spectroscopic study revealed that Sr-doping led to increase in the band gap from 3.2 to 3.7 eV and shifting of absorption edge to the lower wavelength. The blue shift in the band gap with the dopant concentration shows that the band gap of doped cerium oxide nanoparticles can be tuned with variation in the dopant concentration.

Keywords

Sr-doped cerium oxide Blue shift Band gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors AK and AGS extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number RGP 1/49/39.

References

  1. 1.
    Tok, A.I.Y.; Boey, F.Y.C.; Dong, Z.; Sun, X.L.: Hydrothermal synthesis of \(\text{ CeO }_{2}\) nano-particles. Mater. Process. Technol. 190, 217–222 (2007)CrossRefGoogle Scholar
  2. 2.
    Marina, O.A.; Bagger, C.; Primdahl, S.; Mogensen, M.: Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. Solid State Ionics 123, 199–208 (1999)CrossRefGoogle Scholar
  3. 3.
    Trovarelli, A.; De Leitenburg, C.; Boaro, M.; Dolcetti, G.: The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999)CrossRefGoogle Scholar
  4. 4.
    Li, R.X.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T.: Synthesis and UV-shielding properties of ZnO- and CaO-doped \(\text{ CeO }_{2}\) via soft solution chemical process. Solid State Ionics 151, 235–241 (2002)CrossRefGoogle Scholar
  5. 5.
    Masui, T.; Hirai, H.; Hamada, R.; Imanaka, N.; Adachi, G.; Sakatac, T.; Mori, H.: Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride. J. Mater. Chem. 13, 622–627 (2002)CrossRefGoogle Scholar
  6. 6.
    Hu, C.; Zhang, Z.; Liu, H.; Gao, P.; Wang, Z.L.: Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnology 17, 5983–5987 (2006)CrossRefGoogle Scholar
  7. 7.
    Araujo, V.D.; Avansi, W.; de Carvalho, H.B.; Moreira, M.L.; Longo, E.; Ribeiro, C.; Bernardi, M.I.B.: \(\text{ CeO }_{2}\) nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. Cryst. Eng. Comm. 14, 1150–1154 (2012)CrossRefGoogle Scholar
  8. 8.
    Liu, I.; Hon, M.H.; Teoh, L.G.: Structure and optical properties of CeO2 nanoparticles synthesized by precipitation. J. Electron. Mater. 42, 2536–2541 (2013)CrossRefGoogle Scholar
  9. 9.
    Saranya, J.; Ranjith, K.S.; Saravanan, P.; Mangalaraj, D.; Kumar, R.T.R.: Cobalt-doped cerium oxide nanoparticles: enhanced photocatalytic activity under UV and visible light irradiation. Mater. Sci. Semicond. Process. 26, 218–224 (2014)CrossRefGoogle Scholar
  10. 10.
    Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H.: Shape-selective synthesis of oxygen storage behavior of ceria nanopolyhedra nanorods and nanocubes. J. Phys. Chem. B 109, 24380–24385 (2005)CrossRefGoogle Scholar
  11. 11.
    Xufeng, G.; Chunlin, C.; Shiyuan, R.; Jian, Z.; Dangsheng, S.: Structural effects of cerium oxides on their thermal stability and catalytic performance in propane oxidation dehydrogenation. Chin. J. Catal. 33, 1059–1063 (2012)Google Scholar
  12. 12.
    Herrling, T.; Seifert, M.; Jung, K.: Cerium oxide: future UV filters in sunscreen. SOFW-J. 12, 10–14 (2013)Google Scholar
  13. 13.
    Goubin, F.; Rocquefelte, X.; Whangbo, M.H.; Montardi, Y.; Brec, R.; Jobic, S.: Experimental and theoretical characterization of the optical properties of \(\text{ CeO }_{2}\), \(\text{ SrCeO }_{3}\), and \(\text{ Sr }_{2}\text{ CeO }_{4}\) containing \(\text{ Ce }^{4+}\) \((\text{ f }^{0})\) ions. Chem. Mater. 16, 662–669 (2004)CrossRefGoogle Scholar
  14. 14.
    Smijs, T.G.; Pavel, S.: Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 95–112 (2011)CrossRefGoogle Scholar
  15. 15.
    Minamidate, Y.; Yin, S.; Sato, T.: Synthesis and characterization of plate-like ceria particles for cosmetic application. Mater. Chem. Phys. 123, 516–520 (2010)CrossRefGoogle Scholar
  16. 16.
    Prabaharan, D.M.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, S.: Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater. Res. 19(2), 478–482 (2016)CrossRefGoogle Scholar
  17. 17.
    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T.P.: Synthesis of cerium oxide \((\text{ CeO }_{2})\) nanoparticles using simple CO-precipitation method. Rev. Mex. Fis. E. 62, 496–499 (2016)Google Scholar
  18. 18.
    Liang, H.; Raitano, J.M.; He, G.; Akey, A.J.; Herman, I.P.; Zhang, L.; Chan, S.W.: Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 42, 299–307 (2012)CrossRefGoogle Scholar
  19. 19.
    Le Gal, A.; Abanades, S.: Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J. Phys. Chem. C 116(25), 13516–13523 (2012)CrossRefGoogle Scholar
  20. 20.
    Kumar, A.; Babu, S.; Karakoti, A.S.; Schulte, A.; Seal, S.: Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25, 10998–11007 (2009)CrossRefGoogle Scholar
  21. 21.
    Ferreira, V.J.; Tavares, P.; Figueiredo, J.L.; Faria, J.L.: Effect of Mg, Ca and Sr on CeO2 based catalysts for oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. Ind. Eng. Chem. Res. 51, 10535–10541 (2012)CrossRefGoogle Scholar
  22. 22.
    Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.: Photocatalytic degradation of methyl orange by \(\text{ CeO }_{2}\) and Fe-doped \(\text{ CeO }_{2}\) films under visible light irradiation. Sci. Rep. 4, 1–20 (2014)Google Scholar
  23. 23.
    Shirasaka, H.; Kisanuki, T.; Hirata, Y.; Matsunaga, N.; Sameshima, S.: Synthesis of gadolinium-doped ceria nanoparticles by electrolysis of aqueous solutions. J. Ceram. Process. Res. 14, 332–336 (2013)Google Scholar
  24. 24.
    Wang, H.F.; Li, H.Y.; Gong, X.Q.; Guo, Y.L.; Lu, G.Z.; Hu, P.: Oxygen vacancy formation in \(\text{ CeO }_{2}\) and \(\text{ Ce }_{(1--x)}\text{ Zr }_{(x)}\text{ O }_{2}\) solid solutions: electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 14(48), 16521–16535 (2012)CrossRefGoogle Scholar
  25. 25.
    Manikantan, J.; Ramalingam, H.B.; Shekar, B.C.; Murugan, B.; Kumar, R.R.; Santhoshi, J.S.: Wide band gap of strontium doped hafnium oxide nanoparticles for optoelectronic device applications—synthesis and characterization. Mater. Lett. 186, 42–44 (2017)CrossRefGoogle Scholar
  26. 26.
    Menon, A.S.; Kalarikkal, N.; Thomas, S.: Studies on structural and optical properties of ZnO and Mn- doped ZnO nanopowders. Ind. J. Nano. Sci. 1, 16–24 (2013)Google Scholar
  27. 27.
    Takeda, Y.; Mafuné, F.: Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution. Chem. Phys. Lett. 599, 110–115 (2014)CrossRefGoogle Scholar
  28. 28.
    Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T.: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes. Mater. Chem. Phys. 75(28), 39–44 (2002)Google Scholar
  29. 29.
    Ouhaibi, A.; Ghamnia, M.; Dahamni, M.A.; Heresanu, V.; Fauquet, C.; Tonneau, D.: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci. Adv. Mater. Devices 3, 29–36 (2018)CrossRefGoogle Scholar
  30. 30.
    Jaiswal, N.; Singh, N.K.; Kumar, D.; Parkash, O.: Ceria co-doped with calcium (Ca) and strontium (Sr): a potential candidate as a solid electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sour. 20, 45–54 (2014)Google Scholar
  31. 31.
    Matovic, B.; Bucevac, D.; Jiraborvornpongsa, N.; Yoshida, K.; Yano, T.: Synthesis and characterization of nanometric strontium-doped ceria solid solutions via glycine-nitrate procedure. J. Ceram. Soc. Jpn. 120(2), 69–73 (2012)CrossRefGoogle Scholar
  32. 32.
    Ali, S.R.; Chandra, P.; Latwal, M.; Jain, S.K.; Bansal, V.K.: Growth of cadmium hexacyanidoferrate (III) nanocubes and its application in voltammetric determination of morphine. Bull. Chem. Soc. Jpn. 84(12), 1355–1361 (2011)CrossRefGoogle Scholar
  33. 33.
    Ali, S.R.; Chandra, P.; Latwal, M.; Jain, S.K.; Bansal, V.K.; Singh, S.P.: Synthesis of nickel hexacyanoferrate nanoparticles and their potential as heterogeneous catalysts for the solvent-free oxidation of benzyl alcohol. Chin. J. Catal. 32(12), 1844–1849 (2011)CrossRefGoogle Scholar
  34. 34.
    Liang, H.; Raitano, J.M.; He, G.; Akey, A.J.; Herman, I.P.; Zhang, L.; Chan, S.W.: Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 47, 299–307 (2012)CrossRefGoogle Scholar
  35. 35.
    Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.W.; Herman, I.P.: Size-dependent properties of \(\text{ CeO }_{2-y}\) nanoparticles as studied by Raman scattering. Phys. Rev. B Condens. Matter. Mater. Phys. 64(2), 405–407 (2001)Google Scholar
  36. 36.
    Júnior, J.M.S.; Malta, L.F.B.; Garrido, F.M.S.; Ogasawara, T.; Medeiros, M.E.: Raman and Rietveld structural characterization of sintered alkaline earth doped ceria. Mater. Chem. Phys. 135, 957–964 (2012)CrossRefGoogle Scholar
  37. 37.
    Araujo, V.D.; Avansi, W.; de Carvalho, H.B.; Moreira, M.L.; Longo, E.; Ribeiro, C.; Bernardi, M.I.B.: \(\text{ CeO }_{2}\) nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. Cryst. Eng. Comm. 14, 1150–1154 (2012)CrossRefGoogle Scholar
  38. 38.
    Labrincha, J.A.; Tobaldi, D.M.; Seabra, M.P.; Pullar, R.C.; Piccirillo, C.: W/Ag-co-doped titania nanopowders and their photocatalytic activity. Suranaree J. Sci. Technol. 20(3), 235–248 (2013)Google Scholar
  39. 39.
    Ramadoss, A.; Kim, S.J.: Synthesis and characterization of \(\text{ HfO }_{2}\) nanoparticles by sonochemical approach. J. Alloy. Compd. 544, 115–119 (2012)CrossRefGoogle Scholar
  40. 40.
    Mott, N.F.; Davis, E.A.: Electronic Processes in Non-Crystalline Materials, 2nd edn. Clarendon Press, Oxford (1979)Google Scholar
  41. 41.
    Kim, D.T.; Yu, K.S.; Kim, W.T.; Kim, C.D.; Park, H.L.: Observation of Burstein–Moss shift in heavily copper-doped CaS:Cu phosphor. J. Mater. Sci. Lett. 11, 886–887 (1992)CrossRefGoogle Scholar
  42. 42.
    Rekha, K.; Nirmala, M.; Manjula, G.; Anukaliani, A.: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B. Phy. Cond. Mat. 405(15), 3180–3185 (2010)CrossRefGoogle Scholar
  43. 43.
    Sharma, G.; Chawla, P.; Locha, S.P.; Singh, N.: Burstein Moss effect in nanocrystalline CaS: Ce. Bull. Mater. Sci. 34(4), 673–676 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Chemistry, DSB CampusKumaun UniversityNainitalIndia
  2. 2.Department of ChemistryKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Research Centre for Advanced Materials ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations