Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6901–6910 | Cite as

Ripeness Classification of Bananas Using an Artificial Neural Network

  • Fatma M. A. Mazen
  • Ahmed A. NashatEmail author
Research Article - Electrical Engineering

Abstract

The quality of fresh banana fruit is a main concern for consumers and fruit industrial companies. The effectiveness and fast classification of banana’s maturity stage are the most decisive factors in determining its quality. It is necessary to design and implement image processing tools for correct ripening stage classification of the different fresh incoming banana bunches. Ripeness in banana fruit generally affects the eating quality and the market price of the fruit. In this paper, an automatic computer vision system is proposed to identify the ripening stages of bananas. First, a four-class homemade database is prepared. Second, an artificial neural network-based framework which uses color, development of brown spots, and Tamura statistical texture features is employed to classify and grade banana fruit ripening stage. Results and the performance of the proposed system are compared with various techniques such as the SVM, the naive Bayes, the KNN, the decision tree, and discriminant analysis classifiers. Results reveal that the proposed system has the highest overall recognition rate, which is 97.75%, among other techniques.

Keywords

Image segmentation Features extraction Ripening of bananas Fruit maturity detection Computer vision Artificial neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mendoza, F.; Dejmek, P.; Aguilera, J.M.: Predicting ripening stages of bananas (Musa cavendish) by computer vision. Acta Hortic. 682(183), 1363–1370 (2005)CrossRefGoogle Scholar
  2. 2.
    Mendoza, F.; Aguilera, J.M.: Application of image analysis for classification of ripening bananas. J. Food Sci. 69(9), 471–477 (2004)CrossRefGoogle Scholar
  3. 3.
    Prabha, D.S.; Kumar, J.S.: Assessment of banana fruit maturity by image processing technique. J. Food Sci. Technol. 52(3), 1316–1327 (2015).  https://doi.org/10.1007/s13197-013-1188-3 CrossRefGoogle Scholar
  4. 4.
    AlZubi, S.; Islam, N.; Abbod, M.: Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J. Biomed. Imaging (2011).  https://doi.org/10.1155/2011/136034 Google Scholar
  5. 5.
    Schelkens, P.; Munteanu, A.; Barbarien, J.; Galca, M.; Giro-Nieto, X.; Cornelis, J.: Wavelet coding of volumetric medical data sets. IEEE Trans. Med. Imaging 22(3), 441–458 (2003)CrossRefGoogle Scholar
  6. 6.
    Alzu’bi, S.; Amira, A.: 3D medical volume segmentation using hybrid multiresolution statistical approaches. Adv. Artif. Intell. (2010).  https://doi.org/10.1155/2010/520427 Google Scholar
  7. 7.
    AlZubi, S.; Sharif, M.S.; Abbod, M.: Efficient implementation and evaluation of wavelet packet for 3D medical image segmentation. In: IEEE International Symposium on Medical Measurements and Applications (2011).  https://doi.org/10.1109/MeMeA.2011.5966667
  8. 8.
    AlZubi, S.; Jararweh, Y.; Shatnawi, R.: Medical volume segmentation using 3D multiresolution analysis. In: International Conference on Innovations in Information Technology (IIT) (2012)Google Scholar
  9. 9.
    Nashat, A.A.; Hussain Hassan, N.M.: Automatic segmentation and classification of olive fruits batches based on discrete wavelet transform and visual perceptual texture features. Int. J. Wavelets Multiresolut. Inf. Process. 16(1), 1850003 (2018).  https://doi.org/10.1142/S0219691318500030 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kumar, H.C.S.; Raja, K.B.; Venugopal, K.R.; Patnaik, L.M.: Automatic image segmentation using wavelets. Int. J. Comput. Sci. Netw. Secur. 9(2), 305–313 (2009)Google Scholar
  11. 11.
    Khoje, S.A.; Bodhe, S.K.; Adsul, A.: Automated skin defect identification system for fruit grading based on discrete curvelet transform. Int. J. Eng. Technol. 5(4), 3251–3256 (2013)Google Scholar
  12. 12.
    Hussain Hassan, N.M.; Nashat, A.A.: New effective techniques for automatic detection and classification of external olive fruits defects based on image processing techniques. Multidimens. Syst. Signal Process. (2018).  https://doi.org/10.1007/s11045-018-0573-5 zbMATHGoogle Scholar
  13. 13.
    Al-Zu’bi, S.; Al-Ayyoub, M.; Jararweh, Y.; Shehab, M.A.: Enhanced 3D segmentation techniques for reconstructed 3D medical volumes: robust and accurate intelligent system. Proc. Comput. Sci. 113, 531–538 (2017)CrossRefGoogle Scholar
  14. 14.
    Déniz, O.; Castrillon, M.; Hernández, M.: Face recognition using independent component analysis and support vector machines. Pattern Recogn. Lett. 24(13), 2153–2157 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhao, G.; Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  16. 16.
    Nashat, A.A.: Facial expression recognition using best tree RD-LGP encoded features and HMM. Int. J. Wavelets Multiresolut. Inf. Process. 16(6), 1850047 (2018).  https://doi.org/10.1142/S0219691318500479 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Juncai, H.; Yaohua, H.; Lixia, H.; Kangquan, G.; Satake, T.: Classification of ripening stages of bananas based on support vector machine. Int. J. Agric. Biol. Eng. 8(6), 99–103 (2015)Google Scholar
  18. 18.
    Zhang, Y.; Lian, J.; Fan, M.; Zheng, Y.: Deep indicator for fine-grained classification of banana’s ripening stages. EURASIP J. Image Video Process. 46, 1–10 (2018).  https://doi.org/10.1186/s13640-018-0284-8 Google Scholar
  19. 19.
    Olaniyi, E.O.; Adekunle, A.A.; Odekuoye, T.; Khashman, A.: Automatic system for grading banana using GLCM texture feature extraction and neural network arbitrations. J. Food Process Eng. 40(4), 1–10 (2017)Google Scholar
  20. 20.
    Olaniyi, E.O.; Oyedotun, O.K.; Adnan, K.: Intelligent grading system for banana fruit using neural network arbitration. J. Food Process Eng. 40, 1–9 (2017).  https://doi.org/10.1111/jfpe.12335 Google Scholar
  21. 21.
    Espinoza, E.M.L.; Duran, M.T.; Morales, R.A.L.; Yepez, E.C.; Robles, N.S.: Determination of the ripeness state of guavas using an artificial neural network. Res. Comput. Sci. 121, 105–111 (2016)Google Scholar
  22. 22.
    Sabzi, S.; Gilandeh, Y.A.; Mateos, G.G.: A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms. Inf. Process. Agric. 5, 162–172 (2018)Google Scholar
  23. 23.
    Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M.; Mollazade, K.: Prediction of quality attributes and ripeness classification of bananas using optical properties. Sci. Hortic. 212, 171–182 (2016)CrossRefGoogle Scholar
  24. 24.
    Adebayo, S.A.; Hashim, N.; Abdan, K.; Hanafi, M.; Zude-Sasse, M.: Prediction of banana quality attributes and ripeness classification using artificial neural network. In: Acta Horticulturae, Proceedings of the III International Conference on Agricultural and Food Engineering, pp. 335–343 (2017).  https://doi.org/10.17660/ActaHortic.2017.1152.45
  25. 25.
    Bagri, N.; Johari, P.: A comparative study on feature extraction using texture and shape for content-based image retrieval. Int. J. Adv. Sci. Technol. 80, 41–52 (2015)CrossRefGoogle Scholar
  26. 26.
    Kebapci, H.; Yanikoglu, B.; Unal, G.: Plant image retrieval using color, shape, and texture features. Comput. J. 54(9), 1475–1490 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentFayoum UniversityFayoumEgypt

Personalised recommendations