Nanomechanical, Mechanical Responses and Characterization of Piezoelectric Nanoparticle-Modified Electrospun PVDF Nanofibrous Films

  • M. Satthiyaraju
  • T. RameshEmail author
Research Article - Mechanical Engineering


Limitless implementations of nanofibrous membrane show the importance of understanding the nanomechanical responses for water purification and piezoelectric nanogenerator applications. Here, the polyvinylidene fluoride (PVDF) electrospun nanofibrous films doped by 0.01, 0.05 and 0.1 wt% of ZnO nanoparticles were prepared in the method of electrospinning. Characterizations of PVDF nanocomposite fibrous films were inspected using field emission scanning electron microscope, thermogravimetric analysis, water contact angle, uniaxial tensile test and nanoindentation technique. The influence of minimal concentration of piezoelectric nanoparticles on the morphological, water contact angle, dynamic water contact angle, piezoelectric, thermal and mechanical stabilities of nanocomposite fibrous films was examined. The nanoscale mechanical properties of the PVDF/ZnO nanofibrous films were performed by nanoindentation technique at different spots of nanofibrous mat to examine the elastic–plastic behavior of membranes. The eventual ZnO nanoparticle-modified nanofibrous membranes have been shown nano-level fibers, considerable hydrophilicity and preferable thermal, mechanical and piezoelectric properties. The doping of polymer by 0.1 wt% of ZnO nanoparticles exposed significant enhancement of thermal, mechanical and nanomechanical responses of the melting temperature 2% (170–\(173\,^{\circ }\hbox {C}\)), tensile strength 20% (2.418 MPa), elastic modulus 18% (2.418 GPa) and hardness 60% (235 MPa) and piezoelectric coefficient 13.42 pC/N of the nanofibrous films. These understandings of nanoscale properties are highly promising in the development of sensor and actuators, biomedical, energy harvesting and water filtration devices.


Electrospinning PVDF Piezoelectric nanoparticles Nanofibers Nanomechanical responses Thin films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, W.; Cheng, X.; Fu, X.; Stefanini, C.; Dario, P.: Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectron. Eng. 88, 2251–2254 (2011)CrossRefGoogle Scholar
  2. 2.
    Park, J.M.; Gu, G.Y.; Wang, Z.J.; Kwon, D.J.; Shin, P.S.; Choi, J.Y.; Lawrence DeVries, K.: Mechanical and electrical properties of electrospun CNT/PVDF nanofiber for micro-actuator applications. Adv. Compos. Mater. 25, 305–316 (2016)CrossRefGoogle Scholar
  3. 3.
    Suja, P.S.; Reshmi, C.R.; Sagitha, P.; Sujith, A.: Electrospun nanofibrous membranes for water purification. Polym. Rev. 57, 467–504 (2017)CrossRefGoogle Scholar
  4. 4.
    Wang, H.; Ma, Y.; Cheng, B.; Kang, W.; Li, X.; Shi, L.; Cai, Z.; Zhuang, X.: Solution blown biofunctionalized poly(vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells. Electrochim. Acta 258, 24–33 (2017)CrossRefGoogle Scholar
  5. 5.
    Goh, Y.F.; Shakir, I.; Hussain, R.: Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhao, B.; Hamidinejad, M.; Zhao, C.; Li, R.; Wang, S.; Kazemi, Y.; Park, C.B.: A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J. Mater. Chem. A. (2018).
  7. 7.
    Zhao, B.; Zhao, C.; Wang, C.; Park, C.B.: Poly(vinylidene fluoride) foams: a promising low-K dielectric and heat-insulating material. J. Mater. Chem. C 6, 3065–3073 (2018). CrossRefGoogle Scholar
  8. 8.
    Zhao, B.; Wang, S.; Zhao, C.; Li, R.; Hamidinejad, S.M.; Kazemi, Y.; Park, C.B.: Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon N. Y. 127, 469–478 (2018). CrossRefGoogle Scholar
  9. 9.
    Zhao, B.; Park, C.B.: Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954–6961 (2017). CrossRefGoogle Scholar
  10. 10.
    Zhao, B.; Zhao, C.; Li, R.; Hamidinejad, S.M.; Park, C.B.: Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9, 20873–20884 (2017). CrossRefGoogle Scholar
  11. 11.
    Ma, H.; Hsiao, B.S.; Chu, B.: Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer (Guildf) 52, 2594–2599 (2011)CrossRefGoogle Scholar
  12. 12.
    Chinnappan, A.; Kim, H.: Nanocatalyst: electrospun nanofibers of PVDF—dicationic tetrachloronickelate(II) anion and their effect on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 37, 18851–18859 (2012)CrossRefGoogle Scholar
  13. 13.
    Huang, L.; Manickam, S.S.; McCutcheon, J.R.: Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J. Membr. Sci. 436, 213–220 (2013)CrossRefGoogle Scholar
  14. 14.
    Hou, H.; Gc, J.J.; Zeng, J.; Li, Q.; Reneker, D.H.; Greiner, A.; Cheng, S.Z.D.: Electrospun polyacrylonitrile nanofibcrs containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17, 967–973 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhao, Z.; Li, J.; Yuan, X.; Li, X.; Zhang, Y.; Sheng, J.: Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 97, 466–474 (2005)CrossRefGoogle Scholar
  16. 16.
    Liang, S.; Xiao, K.; Mo, Y.; Huang, X.: A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Memb. Sci. 394–395, 184–192 (2012)CrossRefGoogle Scholar
  17. 17.
    Jia, H.; Wu, Z.; Liu, N.: Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plast. Rubber Compos. 46, 1–7 (2017)CrossRefGoogle Scholar
  18. 18.
    Shanthi, S.I.; Poovaragan, S.; Arularasu, M.V.; Nithya, S.; Sundaram, R.; Magdalane, C.M.; Kaviyarasu, K.; Maaza, M.: Optical, magnetic and photocatalytic activity studies of Li, Mg and Sr doped and undoped zinc oxide nanoparticles. J. Nanosci. Nanotechnol. 18, 5441–5447 (2018)CrossRefGoogle Scholar
  19. 19.
    Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q.: Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 19, 035028 (2009)CrossRefGoogle Scholar
  20. 20.
    Lai, C.Y.; Groth, A.; Gray, S.; Duke, M.: Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment. J. Membr. Sci. 449, 146–157 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhao, C.; Wu, H.; Li, X.; Pan, F.; Li, Y.; Zhao, J.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B.: High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. J. Membr. Sci. 429, 409–417 (2013)CrossRefGoogle Scholar
  22. 22.
    Nili, H.; Kalantar-Zadeh, K.; Bhaskaran, M.; Sriram, S.: In situ nanoindentation: probing nanoscale multifunctionality. Prog. Mater. Sci. 58, 1–29 (2013)CrossRefGoogle Scholar
  23. 23.
    Meza, L.R.; Das, S.; Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014)CrossRefGoogle Scholar
  24. 24.
    Chalker, P.R.; Bull, S.J.; Rickerby, D.S.: A review of the methods for the evaluation of coating-substrate adhesion. Mater. Sci. Eng. A 140, 583–592 (1991)CrossRefGoogle Scholar
  25. 25.
    Fu, W.E.; Chang, Y.Q.; Chang, C.W.; Yao, C.K.; Der, L.J.: Mechanical properties of ultra-thin HfO2films studied by nano scratches tests. Thin Solid Films 529, 402–406 (2013)CrossRefGoogle Scholar
  26. 26.
    Hodzic, A.; Stachurski, Z.H.; Kim, J.K.: Nano-indentation of polymer—glass interfaces. Part I. Experimental and mechanical analysis. Polymer (Guildf) 41, 6895–6905 (2000)CrossRefGoogle Scholar
  27. 27.
    Tan, E.P.S.; Lim, C.T.: Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 84, 1603–1605 (2004)CrossRefGoogle Scholar
  28. 28.
    Liu, Z.H.; Pan, C.T.; Lin, L.W.; Lai, H.W.: Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A Phys. 193, 13–24 (2013)CrossRefGoogle Scholar
  29. 29.
    Baniasadi, M.; Xu, Z.; Moreno, S.; Daryadel, S.; Cai, J.; Naraghi, M.; Minary-Jolandan, M.: Effect of thermomechanical post-processing on chain orientation and crystallinity of electrospun P(VDF-TrFE) nanofibers. Polymer (UK) 118, 223–235 (2017)CrossRefGoogle Scholar
  30. 30.
    Baniasadi, M.; Xu, Z.; Hong, S.; Naraghi, M.; Minary-Jolandan, M.: Thermo-electromechanical behavior of piezoelectric nanofibers. ACS Appl. Mater. Interfaces 8, 2540–2551 (2016)CrossRefGoogle Scholar
  31. 31.
    Naraghi, M.; Chasiotis, I.; Kahn, H.; Wen, Y.; Dzenis, Y.: Novel method for mechanical characterization of polymeric nanofibers. Rev. Sci. Instrum. 78, 085108 (2007)CrossRefGoogle Scholar
  32. 32.
    Oliver, W.C.; Pharr, G.M.; Introduction, I.: An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRefGoogle Scholar
  33. 33.
    Oliver, W.C.; Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRefGoogle Scholar
  34. 34.
    Hang, Y.; Liu, G.; Huang, K.; Jin, W.: Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. J. Membr. Sci. 494, 205–215 (2015)CrossRefGoogle Scholar
  35. 35.
    Jin, T.; Niu, X.; Xiao, G.; Wang, Z.; Zhou, Z.; Yuan, G.; Shu, X.: Effects of experimental variables on PMMA nano-indentation measurements. Polym. Test. 41, 1–6 (2015)CrossRefGoogle Scholar
  36. 36.
    Mani, M.R.; Gebrekrstos, A.; Madras, G.; Pötschke, P.; Bose, S.: PVDF-MWNT interactions control process induced \(\upbeta \)-lamellar morphology and orientation in the nanocomposites. Phys. Chem. Chem. Phys. 20, 24821–24831 (2018). CrossRefGoogle Scholar
  37. 37.
    Martins, P.; Lopes, A.C.; Lanceros-Mendez, S.: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). CrossRefGoogle Scholar
  38. 38.
    Kim, Y.S.; Xie, Y.; Wen, X.; Wanga, S.; Kim, S.J.; Song, H.K.; Wanga, Z.L.: Highly porouspiezoelectricPVDF membraneaseffectivelithiumion transferchannelsforenhanced self-charging powercell. Nano Energy 14, 77–86 (2014). CrossRefGoogle Scholar
  39. 39.
    Noei, H.; Qiu, H.; Wang, Y.; Löffler, E.; Wöll, C.; Muhler, M.: The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)CrossRefGoogle Scholar
  40. 40.
    Celebioglu, A.; Yildiz, Z.I.; Uyar, T.: Electrospun crosslinked poly-cyclodextrin nanofibers: highly efficient molecular filtration thru host-guest inclusion complexation. Sci. Rep. 7, 1–11 (2017)CrossRefGoogle Scholar
  41. 41.
    Huang, L.; Arena, J.T.; McCutcheon, J.R.: Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J. Membr. Sci. 499, 352–360 (2016)CrossRefGoogle Scholar
  42. 42.
    Bae, J.; Baek, I.; Choi, H.: Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017). CrossRefGoogle Scholar
  43. 43.
    Chipara, M.; Lozano, K.; Hernandez, A.; Chipara, M.: TGA analysis of polypropylene-carbon nanofibers composites. Polym. Degrad. Stab. 93, 871–876 (2008)CrossRefGoogle Scholar
  44. 44.
    Shin, I.H.; Hong, S.; Lim, S.J.; Son, Y.S.; Kim, T.H.: Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Ind. Eng. Chem. 46, 103–110 (2017)CrossRefGoogle Scholar
  45. 45.
    Wu, M.; Huang, H.X.; Tong, J.: Enhancing \(\upbeta \)-phase content and tensile properties in poly(vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion. Mater. Des. 108, 761–768 (2016)CrossRefGoogle Scholar
  46. 46.
    Asai, H.; Kikuchi, M.; Shimada, N.; Nakane, K.: Effect of melt and solution electrospinning on the formation and structure of poly(vinylidene fluoride) fibres. RSC Adv. 7, 17593–17598 (2017)CrossRefGoogle Scholar
  47. 47.
    Kancheva, M.; Toncheva, A.; Manolova, N.; Rashkov, I.: Enhancing the mechanical properties of electrospun polyester mats by heat treatment. Express Polym. Lett. 9, 49–65 (2015)CrossRefGoogle Scholar
  48. 48.
    Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H.: Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24, 405401 (2013)CrossRefGoogle Scholar
  49. 49.
    Hong, J.; He, Y.: Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 302, 71–79 (2012)CrossRefGoogle Scholar
  50. 50.
    McKee, C.T.; Last, J.A.; Russell, P.; Murphy, C.J.: Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 17, 155–164 (2011)CrossRefGoogle Scholar
  51. 51.
    Callister, W.; Rethwisch, D.: Materials Science and Engineering: An Introduction. Wiley, New York (2007)Google Scholar
  52. 52.
    Singh, H.H.; Khare, N.: Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 51, 216–222 (2018). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Micro Engineering Laboratory, Department of Mechanical EngineeringNational Institute of Technology, TiruchirappalliTiruchirappalliIndia

Personalised recommendations