Advertisement

Influence of Bacillus subtilis and Pseudomonas aeruginosa BSW and Clinoptilolite Addition on the Biowaste Composting Process

  • Dajana K. GrgićEmail author
  • Marija V. Domanovac
  • Tomislav Domanovac
  • Monika Šabić
  • Matija Cvetnić
  • Vesna O. Bulatović
Research Article - Chemical Engineering
  • 14 Downloads

Abstract

This work aimed the influence of inoculation of Pseudomonas aeruginosa BSW, Bacillus subtilis and zeolite on a biowaste composting process. The composting process of biowaste was conducted without (experiment P1) and with (experiment P2) inoculation of selected bacteria and zeolite. The addition of 4% of zeolite into biowaste displayed the retention of ammonium in composting material. In experiment P2, the emission of ammonia (147 mg \(\text {kg}_{\mathrm{VM}}^{-1})\) was about four times less than in experiment P1 (509 mg \(\text {kg}_{\mathrm{VM}}^{-1})\). The concentration of \(\text {NH}_{4}^{+}\) ions in composting material and in condensate in P1 was 924 mg \(\text {dm}^{-3 }\)and 6588 mg \(\text {dm}^{-3}\) and in P2 9 mg \(\text {dm}^{-3 }\) and 91 mg \(\text {dm}^{-3}\), respectively.\(^{.}\)The volume of produced leachate and the concentration of \(\text {NH}_{4}^{+}\) ions in leachate in P1 was 150 \(\hbox {cm}^{3}\) and 1266 mg \(\text {dm}^{-3 }\) and in P2 75 \(\hbox {cm}^{3}\) and 9 mg \(\text {dm}^{-3}\), respectively. Toxicity Impact Index (TII50) of leachate in P1 and in P2 was 90.1 and 5.4, respectively, which indicated that P1 was extremely toxic leachate. The obtained conversion of composting material in P1 and P2 was 64% and 71%, respectively, which shows that inoculated bacteria accelerated biodegradation process. Degradation of biowaste during composting was described as first-order process, and kinetic parameter \(k_{0}\) and reaction enthalpy were estimated for P1 and P2 [\(k_{0}\) (P1 and P2) \(= 0.021\pm \) 0.001 d\(^{-1}\), \(\Delta H_\mathrm{r}\) (P1 and P2) = 2660 ± 26 kJ \(\text {kg}_{\mathrm{vs}}^{-1}\)].

Keywords

Composting process Biowaste Leachate Natural zeolite clinoptilolite Inoculation of bacteria Mathematical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the financial support from Croatian Science Foundation through project entitled Modelling of Environmental Aspects of Advanced Water Treatment for Degradation of Priority Pollutants (MEAoWT) (IP-09-2014-7992) and Mineral Promet d.o.o., Croatia on donation of natural zeolite clioptilolite.

References

  1. 1.
    Himanen, M.; Hänninen, K.: Composting of bio-waste, aerobic and anaerobic sludges—effect of feedstock on the process and quality of compost. Bioresour. Technol. (2011).  https://doi.org/10.1016/j.biortech.2010.059 Google Scholar
  2. 2.
    Hu, Z.; Lane, R.; Wen, Z.: Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system. Waste Manag. (2008).  https://doi.org/10.1016/j.wasman.2008.02.016 Google Scholar
  3. 3.
    Kučić, D.; Briški, F.: Emission of gases during composting of solid waste. KUI (2017).  https://doi.org/10.15255/KUI.2016.050 Google Scholar
  4. 4.
    Zhang, L.; Sun, X.: Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manag. (2015).  https://doi.org/10.1016/j.wasman.2015.02.037 Google Scholar
  5. 5.
    Kučić, D.; Kopčić, N.; Briški, F.: Zeolite and potting soil sorption of \(\text{ CO }_{2}\) and \(\text{ NH }_{3}\) evolved during co-composting of grape and tobacco waste. Chem Pap. (2013).  https://doi.org/10.2478/s11696-013-0322-z Google Scholar
  6. 6.
    Roy, D.; Azaïs, A.; Benkaraache, S.; Drogui, P.; Tyagi, R.D.: Composting leachate: characterization, treatment, and future perspectives. Rev. Environ. Sci. Biotechnol. (2018).  https://doi.org/10.1007/s11157-018-9462-5 Google Scholar
  7. 7.
    Wang, S.B.; Peng, Y.L.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. (2010).  https://doi.org/10.1016/j.cej.2009.10.029 Google Scholar
  8. 8.
    Kurán, P.; Trögl, J.; Nováková, J.; Pilarová, V.; Dánová, P.; Pavlorková, J.; Kozler, J.; Novák, F.; Popelka, J.: Biodegradation of spilled diesel fuel in agricultural soil: effect of humates, zeolite, and bioaugmentation. Sci. World (2014).  https://doi.org/10.1155/2014/642427 Google Scholar
  9. 9.
    Wang, J.Z.; Hu, Z.Y.; Xu, X.K.; Jiang, X.; Zheng, B.H.; Liu, X.N.; Pan, X.B.; Kardol, P.: Emissions of ammonia and greenhouse gases during combined precomposting and vermicomposting of duck manure. Waste Manag. (2014).  https://doi.org/10.1016/j.wasman.2014.04.010 Google Scholar
  10. 10.
    Headstrom, A.: Ion exchange of ammonium in zeolites: a literature review. J. Environ. Eng. (2001).  https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8 Google Scholar
  11. 11.
    Herner, Ž.; Kučić, D.; Zelić, B.: Biodegradation of imidacloprid by composting process. Chem. Pap. (2017).  https://doi.org/10.1007/s11696-016-0031-5 Google Scholar
  12. 12.
    Haddadin, M.S.Y.; Haddadin, J.; Arabiyat, O.I.; Hattar, B.: Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour. Technol. (2009).  https://doi.org/10.1016/j.biortech.2009.04.047 Google Scholar
  13. 13.
    Zeng, G.; Yu, M.; Chen, Y.; Huang, D.; Zhang, J.; Huang, H.; Jiang, R.; Yu, Z.: Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural composting. Bioresour. Technol. (2010).  https://doi.org/10.1016/j.biortech.2009.08.013 Google Scholar
  14. 14.
    Nduka, B.A.; Oduwaye, O.F.; Adewale, D.B.: Potential of Streptomyces sp. and Trichoderma sp. as compost microbiota for coffee husk. Afr. J. Biotechnol. (2017).  https://doi.org/10.5897/AJMR2017.8476 Google Scholar
  15. 15.
    Diallo, N.D.D.; Bengue, M.M.; Guer, M.N.; Ka, M.; Tine, E.; Mbaye, C.T.: Composting of sugar cane bagasse by Bacillus strains. Afr. J. Biotechnol. (2017).  https://doi.org/10.5897/AJB2015.14998 Google Scholar
  16. 16.
    Gibello, A.; Vela, A.I.; Martín, M.; Mengs, G.; Alonso, P.Z.; Garbi, C.; Fernández-Garayzábal, J.F.: Pseudomonas composti sp. nov., isolated from compost samples. Int. J. Syst. Evol. Microbiol. (2011).  https://doi.org/10.1099/ijs.0.027086-0 Google Scholar
  17. 17.
    Prescott, L.M.; Harley, J.P.; Klein, D.A.: Microbiology, 3rd edn. WCB Publishers, Chichester (1996)Google Scholar
  18. 18.
    Bergey, D.H.; Holt, J.G.: Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins, Baltimore (1994)Google Scholar
  19. 19.
    Austrian Standards Institute: Austrian Standard: Analytical Methods and Quality Control for Waste Compost. ÖNORM S 2023, Vienna, Austria (1986)Google Scholar
  20. 20.
    APHA: Standard Methods for the Examination of Water and Wastewater, 16th edn. American Public Health Association, Washington (1985)Google Scholar
  21. 21.
    EN ISO 11348-3: Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of the Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization, SwitzerlandGoogle Scholar
  22. 22.
    Briški, F.; Kopčić, N.; Ćosić, I.; Kučić, D.; Vuković, M.: Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem. Pap. (2012).  https://doi.org/10.2478/s11696-012-0234-3 Google Scholar
  23. 23.
    Kolthoff, I.M.; Sandel, E.B.: Inorganic Quantitative Analysis, pp. 347–352. Školska Knjiga, Zagreb (1951) (in Croatian) Google Scholar
  24. 24.
    Rodrigues, C.C.; Moraes Jr., D.; Nobrega, S.W.; Barboza, M.G.: Ammonia adsorption on fixed bed of activated carbon. Bioresour. Technol. (2007).  https://doi.org/10.1016/j.biortech.2006.03.024 Google Scholar
  25. 25.
    Mason, I.G.: Mathematical modelling of the composting process: a review. Waste Manag. (2006).  https://doi.org/10.1016/j.wasman.2005.01.021 Google Scholar
  26. 26.
    Briški, F.; Horgas, N.; Vuković, M.; Gomzi, Z.: Aerobic composting of tobacco industry solid waste—simulation of the process. Clean Technol. Environ. (2003).  https://doi.org/10.1007/s10098-003-0218-7 Google Scholar
  27. 27.
    Haug, T.: The Practical Handbook of Composting Engineering, Chap. 9, pp. 326–327. Lewis Publishers, Boca Raton (1993)Google Scholar
  28. 28.
    Xiong, Z.-Q.; Wang, G.-X.; Huo, Z.-C.; Yan, L.; Gao, Y.-M.; Wang, Y.-J.; Gu, J.-D.; Wang, W.-D.: Effect of aeration rates on the composting processes and Nitrogen loss during composting. Appl. Environ. Biotechnol. (2017).  https://doi.org/10.26789/AEB.2017.01.003 Google Scholar
  29. 29.
    Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y.: Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of the compost. Bioresour. Technol. (2012).  https://doi.org/10.1016/j.biortech.2012.02.099 Google Scholar
  30. 30.
    Rasapoor, M.; Nasrabadi, T.; Kamali, M.; Hoveidi, H.: The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manag. (2009).  https://doi.org/10.1016/j.wasman.2008.04.012 Google Scholar
  31. 31.
    Plachá, D.; Raclavská, H.; Kučerová, M.; Kuchařová, J.: Volatile fatty acid evolution in biomass mixture composts prepared in open and closed bioreactors. Waste Manag. (2013).  https://doi.org/10.1016/j.wasman.2013.01.021 Google Scholar
  32. 32.
    Zhao, Y.; Zhang, Z.; Wei, Y.; Wang, H.; Lu, Q.; Li, Y.; Wei, Z.: Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Manag. (2017).  https://doi.org/10.1016/j.wasman.2017.06.022 Google Scholar
  33. 33.
    Kopčić, N.; Vuković Domanovac, M.; Kučić, D.; Briški, F.: Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste. Waste Manag. (2014).  https://doi.org/10.1016/j.wasman.2013.11.001 Google Scholar
  34. 34.
    Malamis, D.; Bourka, A.; Stamatopoulou, E.; Moustakas, K.; Skiadi, O.; Loizidou, M.: Study and assessment of segregated biowaste composting: the case study of Attica municipalities. J. Environ. Manag. (2017).  https://doi.org/10.1016/j.jenvman.2016.09.070 Google Scholar
  35. 35.
    Chroni, C.; Kyriacou, A.; Georgaki, I.; Manios, T.; Kotsou, M.; Lasaridi, K.: Microbial characterization during composting of biowaste. Waste Manag. (2009).  https://doi.org/10.1016/j.wasman.2008.12.012 Google Scholar
  36. 36.
    Oviedo-Ocańa, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Torres-López, W.A.; Dominguez, I.; Komilis, D.; Sánchez, A.: A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: a case study in Columbia. Waste Manag. (2017).  https://doi.org/10.1016/j.wasman.2017.02.010 Google Scholar
  37. 37.
    Paillat, J.M.; Robin, P.; Hassouna, M.; Leterme, P.: Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ. (2005).  https://doi.org/10.1016/j.atmosenv.2005.07.045 Google Scholar
  38. 38.
    Oviedo-Ocańa, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Hoyos, L.V.; Gonzales, S.; Barrena, R.; Komilis, D.; Sánchez, A.: Stability and maturity of biowaste composts derived by small municipalities: correlation among physical, chemical and biological indices. Waste Manag. (2015).  https://doi.org/10.1016/j.wasman.2015.07.034 Google Scholar
  39. 39.
    Hanc, A.; Ochecova, P.; Vasak, F.: Changes of parameters during composting of bio-waste collected over four seasons. Environ. Technol. (2017).  https://doi.org/10.1080/09593330.2016.1246611 Google Scholar
  40. 40.
    Sanchez-Monedero, M.A.; Roig, A.; Paredes, C.; Bernal, M.P.: Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. (2001).  https://doi.org/10.1016/S0960-8524(01)00031-1 Google Scholar
  41. 41.
    Vuković, M.; Ćosić, I.; Kučić, D.; Kopčić, N.; Briški, F.: Biodegradation kinetics of tobacco-waste leachate by activated sludge in a sequencing batch reactor. CABEQ 26, 191–198 (2012)Google Scholar
  42. 42.
    Bakhshoodeh, R.; Alavi, N.; Majlesi, M.; Paydary, P.: Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol. Eng. (2017).  https://doi.org/10.1016/j.ecoleng.2017.04.058 Google Scholar
  43. 43.
    Awasthi, M.K.; Wang, Q.; Wang, M.; Chen, H.; Ren, X.; Zhao, J.; Zhang, Z.: In-vessel co-composting of food waste employing enriched bacterial consortium. Food. Tehnol. Biotechnol. (2017).  https://doi.org/10.17113/ftb.56.01.18.5439 Google Scholar
  44. 44.
    Petric, I.; Selimbašić, V.: Development and validation of mathematical model for aerobic composting process. Chem. Eng. J. (2008).  https://doi.org/10.1016/j.cej.2007.08.017 Google Scholar
  45. 45.
    Ćosić, I.; Vuković, M.; Gomzi, Z.; Briški, F.: Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste. Chem. Pap. (2013).  https://doi.org/10.2478/s11696-012-0287-3 Google Scholar
  46. 46.
    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S.: Composting in small laboratory pilots: performance and reproducibility. Waste Manag. (2012).  https://doi.org/10.1016/j.wasman.2011.09.011 Google Scholar
  47. 47.
    Kopčić, N.; Vuković Domanovac, M.; Đaković, Z.; Briški, F.: Composting of tobacco dust in different types of reactors. Cabeq 27, 57–64 (2013)Google Scholar
  48. 48.
    Herner, Ž.; Bažok, R.; Briški, F.: Biodegradation of imidacloprid in an open composting pile. J. Food Agric. Environ. 12, 198–202 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.IPZ Uniprojekt TERRA d.o.o.ZagrebCroatia

Personalised recommendations