Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5871–5879 | Cite as

Evaluation of the Forward Osmosis Performance of Cellulose Acetate Nanocomposite Membranes

  • Rajesha Kumar
  • Mansour Ahmed
  • B. Garudachari
  • Jibu P. Thomas
Research Article - Chemical Engineering
  • 44 Downloads

Abstract

The polydopamine-modified halloysite nanotubes (DHNT) were synthesized for the improved dispersion in CA membrane matrix to obtain a CA-DHNT mixed matrix forward osmosis (FO) membranes. The FO membranes were characterized by Raman spectroscopy, porosity measurement, and contact angle study. The altered viscosities of the dope solutions with different concentrations of DHNT were measured and its effect on resultant FO membrane morphological features was studied. The CA-DHNT hybrid membranes produced high water permeation and low salt permeability owing to their high hydrophilicity, dense top layers, and due to the formation of a more sponge-like structures in their cross sections. The loading of 0.5 wt% of DHNTs was optimized composition for the loading and the same membrane witnessed a maximum of \(16\,\,\hbox {L}/\hbox {m}^{2}\hbox {h}\) FO water flux and performed better than commercial HTI FO membrane. This study demonstrated the competent nature of DHNTs toward the fabrication of potential FO membranes with least salt permeability and high water permeation properties.

Keywords

Nanocomposite membranes Halloysite nanotube Forward osmosis Morphology Antifouling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors are thankful to the Kuwait Institute for Scientific Research (KISR) for funding and supporting the implementation of this research work. Furthermore, we would like to acknowledge, with much appreciation, the crucial role played by the staff of the Doha Research Station of KISR, who helped us to assemble the experimental setup and gave fruitful comments and advice.

References

  1. 1.
    Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)CrossRefGoogle Scholar
  2. 2.
    Chung, T.S.; Zhang, S.; Wang, K.Y.; Su, J.C.; Ling, M.M.: Forward osmosis processes: yesterday, today and tomorrow. Desalination 287, 78–81 (2012)CrossRefGoogle Scholar
  3. 3.
    Huang, X.; Solasi, R.; Zou, Y.; Feshler, M.; Reifsnider, K.; Condit, D.; Burlatsky, S.; Madden, T.: Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. J. Polym. Sci. Part B Polym. Phys. 44, 2346–2357 (2006)CrossRefGoogle Scholar
  4. 4.
    Venketeswari, P.; Leong, O.S.; Yong, N.H.: Seawater desalination using forward osmosis process. J. Water Reuse Desalin. 4, 34–40 (2014)CrossRefGoogle Scholar
  5. 5.
    Ng, H.Y.; Tang, W.; Wong, W.S.: Performance of forward (direct) osmosis process: membrane structure and transport phenomenon. Environ. Sci. Technol. 40, 2408–2413 (2006)CrossRefGoogle Scholar
  6. 6.
    Wei, J.; Qiu, C.; Tang, C.Y.; Wang, R.; Fane, A.G.: Synthesis and characterization of flatsheet thin film composite forward osmosis membranes. J. Membr. Sci. 372, 292–302 (2011)CrossRefGoogle Scholar
  7. 7.
    Zhang, S.; Wang, K.Y.; Chung, T.-S.; Chen, H.; Jean, Y.C.; Amy, G.: Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J. Membr. Sci. 360, 522–535 (2010)CrossRefGoogle Scholar
  8. 8.
    Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R.: Water purification by membranes: the role of polymer science. J. Polym. Sci. Part B Polym. Phys. 48, 1685–1718 (2010)CrossRefGoogle Scholar
  9. 9.
    Su, J.; Yang, Q.; Teo, J.F.; Chung, T.S.: Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 355, 36–44 (2010)CrossRefGoogle Scholar
  10. 10.
    Wang, K.Y.; Ong, R.C.; Chung, T.S.: Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 49, 4824–4831 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhang, S.; Wang, K.Y.; Chung, T.S.; Jean, Y.C.; Chen, H.: Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chem. Eng. Sci. 66, 2008–2018 (2011)CrossRefGoogle Scholar
  12. 12.
    Su, J.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S.: Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. J. Membr. Sci. 396, 92–100 (2012)CrossRefGoogle Scholar
  13. 13.
    Sairam, M.; Sereewatthanawut, E.; Li, K.; Bismarck, A.; Livingston, A.G.: Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-desalination using \(\text{ MgSO }_{4}\) draw solution. Desalination 273, 299–307 (2011)CrossRefGoogle Scholar
  14. 14.
    Nguyen, T.P.N.; Yun, E.-T.; Kim, I.-C.; Kwon, Y.-N.: Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci. 433, 49–59 (2013)CrossRefGoogle Scholar
  15. 15.
    Li, G.; Wang, J.; Hou, D.; Bail, Y.; Liu, H.: Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis. J. Environ. Sci. 45, 7–17 (2016)CrossRefGoogle Scholar
  16. 16.
    Dabaghian, Z.; Rahimpour, A.; Jahanshahi, M.: Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination. Desalination 381, 117–125 (2016)CrossRefGoogle Scholar
  17. 17.
    Choi, H.; Son, M.; Yoon, S.-H.; Celik, E.; Kang, S.; Park, H.; Park, C.-H.; Choi, H.: Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis. Chemosphere 136, 204–210 (2015)CrossRefGoogle Scholar
  18. 18.
    Jing, H.; Higaki, Y.; Ma, W.; Xi, J.; Jinnai, H.; Otsuka, H.; Takahara, A.: Preparation and characterization of polycarbonate nanocomposites based on surface-modified halloysite nanotubes. Polym. J. 46, 307–312 (2014)CrossRefGoogle Scholar
  19. 19.
    Hebbar, R.S.; Isloor, A.M.; Anand, K.; Ismail, A.F.: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J. Mater. Chem. A 4, 764–774 (2016)CrossRefGoogle Scholar
  20. 20.
    Kumar, R.; Al-Haddad, S.; Al-Rughaib, M.; Salman, M.: Evaluation of hydrolyzed Poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination 394, 148–154 (2016)CrossRefGoogle Scholar
  21. 21.
    Liu, Y.; Mi, B.: Combined fouling of forward osmosis membranes: synergistic foulant interaction and direct observation of fouling layer formation. J. Membr. Sci. 407–408, 136–144 (2012)CrossRefGoogle Scholar
  22. 22.
    Gunasekaran, S.; Kumar, R.T.; Ponnusamy, S.: Vibrational spectra and normal coordinate analysis of adrenaline and dopamine. Indian J. Pure Appl. Phys. 45, 884–892 (2007)Google Scholar
  23. 23.
    Chao, C.; Liu, J.; Wang, J.; Zhang, Y.; Zhang, B.; Zhang, Y.; Xiang, X.; Chen, R.: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl. Mater. Interfaces 5, 10559–10564 (2013)CrossRefGoogle Scholar
  24. 24.
    Sanchez-Marquez, J.A.; Fuentes-Ramirez, R.; Cano-Rodriguez, I.; Gamino-Arroyo, Z.; Rubio-Rosas, E.; Kenny, J.M.; Rescignano, N.: Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int. J. Polym. Sci. 2015, 1–12 (2015)CrossRefGoogle Scholar
  25. 25.
    Frost, R.L.; Shovels, H.E.: Raman microprobe spectroscopy of halloysite. Clays Clay Miner. 45, 68–72 (1997)CrossRefGoogle Scholar
  26. 26.
    Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V.: Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)CrossRefGoogle Scholar
  27. 27.
    Susanto, H.; Ulbrich, M.: Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J. Membr. Sci. 327, 125–135 (2009)CrossRefGoogle Scholar
  28. 28.
    Goh, P.S.; Ng, B.C.; Lau, W.J.; Ismail, A.F.: Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep. Purif. Rev. 44, 216–249 (2015)CrossRefGoogle Scholar
  29. 29.
    Rana, D.; Matsuura, T.: Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010)CrossRefGoogle Scholar
  30. 30.
    Ghanbaria, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Davoody, M.; Ismail, A.F.: Super hydrophilic \(\text{ TiO }_{2}\)/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 371, 104–114 (2015)CrossRefGoogle Scholar
  31. 31.
    Peyravi, M.; Rahimpour, A.; Jahanshahi, M.: Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J. Membr. Sci. 423, 225–237 (2012)CrossRefGoogle Scholar
  32. 32.
    Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Khadivi, M.A.; Astinchap, B.; Moradian, R.: Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci. 444, 184–191 (2013)CrossRefGoogle Scholar
  33. 33.
    Kumar, R.; Isloor, A.M.; Ismail, A.F.; Rashid, S.A.; Al Ahmed, A.: Permeation, antifouling and desalination performance of \(\text{ TiO }_{2}\) nanotube incorporated PSf/CS blend membranes. Desalination 316, 76–84 (2013)CrossRefGoogle Scholar
  34. 34.
    Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S.: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)CrossRefGoogle Scholar
  35. 35.
    Niksefat, N.; Jahanshahi, M.; Rahimpour, A.: The effect of \(\text{ SiO }_{2}\) nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 343, 140–146 (2014)CrossRefGoogle Scholar
  36. 36.
    Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M.: Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 367, 340–352 (2011)CrossRefGoogle Scholar
  37. 37.
    Hummer, G.; Rasaiah, J.C.; Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)CrossRefGoogle Scholar
  38. 38.
    Wang, K.Y.; Ong, R.C.; Chung, T.-S.: Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 49, 4824–4831 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Rajesha Kumar
    • 1
  • Mansour Ahmed
    • 1
  • B. Garudachari
    • 1
  • Jibu P. Thomas
    • 1
  1. 1.Water Research CenterKuwait Institute for Scientific ResearchSafatKuwait

Personalised recommendations