Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6315–6324 | Cite as

Experimental Measurements of Shale Fracture Conductivity Under Cyclic Loading

  • Honglian Li
  • Jiren Tang
  • Yiyu Lu
  • Lei Zhou
  • Shuaibin Han
  • Rui Dai
Research Article - Petroleum Engineering
  • 85 Downloads

Abstract

Existing research on shale fracture conductivity is rather sparse and has not taken the effect of loading history into consideration. A splitting device was used to split the shale specimens along bedding, and a 3D scanner was used to characterize the fracture surface. Using a constant 0.3 MPa gas pressure, three shale specimens split by single fractures of different roughness were tested for gas flow during four loading–unloading cycles of 0–10 MPa. Test results show that fracture conductivity exhibited hysteresis similar to that observed in rock mechanics experiments. In addition, it is clear that fracture conductivity is smaller for fractures with rougher surfaces. Building on the cubic law and soil mechanics consolidation theory, a hydraulic aperture model for cyclic loading was developed that helps explain the influence of plastic deformation during loading and unloading on fracture conductivity. This model exhibited trends get the agreement with the data for the range of confining stresses used in the experiments.

Keywords

Shale fracture conductivity Cyclic loading Surface roughness Hydraulic aperture model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, L.; Hou, Z.M.; et al.: Numerical investigation of a low-efficient hydraulic fracturing operation in a tight gas reservoir in the North German Basin. J. Pet. Sci. Eng. 120, 119–129 (2014)CrossRefGoogle Scholar
  2. 2.
    Tripathi, D.; Pournik, P.; et al.: Effect of acid on productivity of fractured shale reservoirs. SPE 1922960 (2014)Google Scholar
  3. 3.
    Zhou, T.; Zhang, S.C.; Feng, Y.; et al.: Experimental study of permeability characteristics for the cemented natural fracture of the shale gas formation. J. Nat. Gas Sci. Eng. 29, 345–54 (2016)CrossRefGoogle Scholar
  4. 4.
    Lomize, G.M.: Filtratsiya v treshchinovatykh porodakh. Gosenergoizdat, Moscow (1951)Google Scholar
  5. 5.
    Kranz, R.L.; Frankel, A.D.; Englder, T.; et al.: The permeability of whole and jointed Barre Granite. Int. J. Rock Mech. Min. Sci. 16, 225–234 (1979)CrossRefGoogle Scholar
  6. 6.
    Gale, J.E.: The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. In: Issues in Rock Mechanics 23rd Symposium on Rock Mechanics, pp. 290–298 (1982)Google Scholar
  7. 7.
    Tsang, Y.W.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20, 1209–15 (1984)CrossRefGoogle Scholar
  8. 8.
    Thompson, M.E.; Brown, S.R.: The effect of anisotropic surface roughness on flow and transport in fractures. J. Geophys. Res. 96(B13), 21923–21932 (1991)CrossRefGoogle Scholar
  9. 9.
    Bandis, S.; Lumsden, A.C.; Barton, N.: Fundamental of rock joint deformation. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 20, 249–268 (1983)CrossRefGoogle Scholar
  10. 10.
    Barton, N.; Bandis, S.; Bakhtar, K.: Strength, deformation and conductivity coupling of rock fractures. Int. J. Rock Mech. Min. Sci. 22, 121–40 (1985)CrossRefGoogle Scholar
  11. 11.
    Barton, N.; Quadros, E.F.: Joint aperture and roughness in the prediction of flow and groutability of rock masses. Int. J. Rock Mech. Min. Sci. 34, 3–4 (1997)CrossRefGoogle Scholar
  12. 12.
    Zimmerman, R.W.; Chen, D.W.; Cook, N.G.W.: The effect of contact area on the permeability of fractures. J. Hydrol. 139, 79–96 (1992)CrossRefGoogle Scholar
  13. 13.
    Zimmerman, R.W.; Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996)CrossRefGoogle Scholar
  14. 14.
    Guo, T.K.; Zhang, S.C.; Gao, J.; et al.: Experimental study of fracture permeability for stimulated reservoir volume (SRV) in shale formation. Transp. Porous Media 90, 525–42 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhang, J.J.; Kamenov, A.; Zhu, D.; et al.: Measurement of realistic fracture conductivity in the Barnett shale. J. Unconv. Oil Gas Resour. 11, 44–52 (2015)CrossRefGoogle Scholar
  16. 16.
    Olsson, R.; Barton, N.: An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 38(3), 317–329 (2001)CrossRefGoogle Scholar
  17. 17.
    Zhou, L.; Hou, M.Z.: A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects. Int. J. Rock Mech. Min. Sci. 60, 370–80 (2013)CrossRefGoogle Scholar
  18. 18.
    Hickey, J.J.; Henk, B.: Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2TP Sims well, Wise County, Texas. AAPG Bull. 33(4), 437–443 (2007)CrossRefGoogle Scholar
  19. 19.
    Biot, M.A.: General theory of three—dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)CrossRefGoogle Scholar
  20. 20.
    Terzaghi, K.; Peck, R.B.; Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)Google Scholar
  21. 21.
    Li, H.; Lu, Y.; Zhou, L.; et al.: Experimental and model studies on loading path-dependent and nonlinear gas flow behavior in shale fractures. Rock Mech. Rock Eng. 2, 1–16 (2017)Google Scholar
  22. 22.
    Wyckoff, R.D.; Botset, H.G.; Muskat, M.; et al.: The measurement of the permeability of porous media for homogeneous fluids. Rev. Sci. Instrum. 4, 394 (1993)CrossRefGoogle Scholar
  23. 23.
    Roman, A.; Ahmadi, G.; Issen, K.A.; et al.: Permeability of fractured media under confining pressure: a simplified model. Open Pet. Eng. J. 5(1), 36–41 (2012)CrossRefGoogle Scholar
  24. 24.
    Witherspoon, J.S.Y.; Wang, K.I.; Gale, J.E.: Validity of cubic law for fluid-flow in a deformable rock fracture. Water Resour. Res. 16, 1016–24 (1980)CrossRefGoogle Scholar
  25. 25.
    Nist: Thermochemical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/. Accessed 20 Oct (2016)
  26. 26.
    Goodman, R.E.; Taylor, R.L.; Brekke, T.A.: The mechanical properties of joints. In: Proceedings of the 3rd ISRM Congress, Held in Denver, USA 1A, pp. 127–140 (1974)Google Scholar
  27. 27.
    Wood, D.M.: Soil Behavior and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Honglian Li
    • 1
    • 2
  • Jiren Tang
    • 1
    • 2
  • Yiyu Lu
    • 1
    • 2
  • Lei Zhou
    • 1
    • 2
  • Shuaibin Han
    • 1
    • 2
  • Rui Dai
    • 3
  1. 1.State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing UniversityChongqingChina
  2. 2.National and Local Joint Engineering Laboratory of Gas Drainage in Complex Coal SeamChongqing UniversityChongqingChina
  3. 3.East Sichuan Drilling Company of CNPC ChuanqingChongqingChina

Personalised recommendations