Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5701–5709 | Cite as

Esterification Reaction Kinetics of Acetic and Oleic Acids with Ethanol in the Presence of Amberlyst 15

  • Afeeq Shahid
  • Yousuf Jamal
  • Sher Jamal Khan
  • Jamshed Ali Khan
  • Bryan Boulanger
Research Article - Chemical Engineering
  • 139 Downloads

Abstract

Esterification of acetic and oleic acids with ethanol in the presence of Amberlyst 15 was evaluated as a function of reaction temperature, fatty acid-to-ethanol molar ratio, catalyst concentration, and fatty acid carbon chain length. All reactions were carried out using a batch reaction system, and the resulting experimental data was modeled using Langmuir–Hinshelwood–Hougen–Watson and Eley–Rideal surface reaction kinetic models to determine reaction rates. Esterification of acetic and oleic acid with ethanol increases with increasing reaction temperature, catalyst concentration, and fatty acid-to-alcohol molar ratio. Shorter carbon chain lengths also enhanced esterification. A maximum esterification of 67.1 and 41.6% was observed for acetic and oleic acid, respectively. Esterification of both fatty acids with ethanol in the presence of Amberlyst 15 was determined to be a surface reaction limited. The reaction rate constant (k) for acetic acid esterification was determined to be 4.31/min according to the ER model (\(R^2 \ge 0.94\)), while oleic acid esterification was determined to be 0.263/min (\(R^{2} \ge 0.79\)) based upon the LHHW model.

Keywords

Heterogeneous esterification Fatty acids Amberlyst 15 Surface reaction Reaction rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2017_2927_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (docx 112 KB)

References

  1. 1.
    Ding, X.; Yuan, X.; Leng, L.; Huang, H.; Wang, H.; Shao, J.; Jiang, L.; Chen, X.; Zeng, G.: Upgrading sewage sludge liquefaction bio-oil by microemulsification: the effect of ethanol as polar phase on solubilization performance and fuel properties. Energy Fuels 31(2), 1574–1582 (2017).  https://doi.org/10.1021/acs.energyfuels.6b02269 CrossRefGoogle Scholar
  2. 2.
    Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.: Heterogeneous esterification of oil with high amount of free fatty acids. Fuel 86(5), 906–910 (2007).  https://doi.org/10.1016/j.fuel.2006.09.006 CrossRefGoogle Scholar
  3. 3.
    Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. 16(5), 3275–3285 (2012).  https://doi.org/10.1016/j.rser.2012.02.063 CrossRefGoogle Scholar
  4. 4.
    Lam, M.K.; Lee, K.T.; Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 28(4), 500–518 (2010).  https://doi.org/10.1016/j.biotechadv.2010.03.002 CrossRefGoogle Scholar
  5. 5.
    Veljković, V.B.; Lakićević, S.H.; Stamenković, O.S.; Todorović, Z.B.; Lazić, M.L.: Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85(17), 2671–2675 (2006).  https://doi.org/10.1016/j.fuel.2006.04.015 CrossRefGoogle Scholar
  6. 6.
    Chuah, L.F.; Bokhari, A.; Yusup, S.; Klemeš, J.J.; Abdullah, B.; Akbar, M.M.: Optimisation and kinetic studies of acid esterification of high free fatty acid rubber seed oil. Arab. J. Sci. Eng. 41(7), 2515–2526 (2016).  https://doi.org/10.1007/s13369-015-2014-1 CrossRefGoogle Scholar
  7. 7.
    Chakrabarti, M.H.; Ali, M.; Usmani, J.N.; Baroutian, S.; Saleem, M.: Technical evaluation of Pongame and Jatropha B20 fuels in Pakistan. Arab. J. Sci. Eng. 38(4), 759–766 (2013).  https://doi.org/10.1007/s13369-012-0368-1 CrossRefGoogle Scholar
  8. 8.
    Roschat, W.; Siritanon, T.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V.: Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew. Energy 101, 937–944 (2017).  https://doi.org/10.1016/j.renene.2016.09.057 CrossRefGoogle Scholar
  9. 9.
    Atabani, A.E.; Badruddin, I.A.; Masjuki, H.H.; Chong, W.T.; Lee, K.T.: Pangium edule reinw: a promising non-edible oil feedstock for biodiesel production. Arab. J. Sci. Eng. 40(2), 583–594 (2015).  https://doi.org/10.1007/s13369-014-1452-5 CrossRefGoogle Scholar
  10. 10.
    Jamal, Y.; Luo, G.; Kuo, C.H.; Rabie, A.; Boulanger, B.O.: Sorption kinetics, thermodynamics and regeneration for lipid feedstock deacidification using a mixed-bed ion-exchange resin. J. Food Process Eng. 37(1), 27–36 (2014).  https://doi.org/10.1111/jfpe.12056 CrossRefGoogle Scholar
  11. 11.
    Hayyan, A.; Alam, M.Z.; Mirghani, M.E.S.; Kabbashi, N.A.; Hakimi, N.I.N.M.; Siran, Y.M.; Tahiruddin, S.: Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101(20), 7804–7811 (2010).  https://doi.org/10.1016/j.biortech.2010.05.045 CrossRefGoogle Scholar
  12. 12.
    Giri, B.Y.; Rao, K.N.; Devi, B.L.A.P.; Lingaiah, N.; Suryanarayana, I.; Prasad, R.B.N.; Prasad, P.S.S.: Esterification of palmitic acid on the ammonium salt of 12-tungstophosphoric acid: the influence of partial proton exchange on the activity of the catalyst. Catal. Commun. 6(12), 788–792 (2005).  https://doi.org/10.1016/j.catcom.2005.08.001 CrossRefGoogle Scholar
  13. 13.
    Brahmkhatri, V.; Patel, A.: Supported heteropolyacids: sytnhesis, characterization and effect of supports on esterification reactions. Kinet. Catal. 51(3), 380–384 (2010).  https://doi.org/10.1134/s0023158410030092 CrossRefGoogle Scholar
  14. 14.
    Zhang, Q.; Wei, F.; Ma, P.; Zhang, Y.; Wei, F.; Chen, H.: Mesoporous Al-Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-9865-5 CrossRefGoogle Scholar
  15. 15.
    Park, J.-Y.; Kim, D.-K.; Lee, J.-S.: Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 101(1), S62–S65 (2010).  https://doi.org/10.1016/j.biortech.2009.03.035 CrossRefGoogle Scholar
  16. 16.
    Son, S.M.; Kimura, H.; Kusakabe, K.: Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst. Bioresour. Technol. 102(2), 2130–2132 (2011).  https://doi.org/10.1016/j.biortech.2010.08.089 CrossRefGoogle Scholar
  17. 17.
    Khan, J.A.; Jamal, Y.; Shahid, A.; Boulanger, B.O.N.: Esterification of acetic and oleic acids within the Amberlyst 15 packed catalytic column. Korean J. Chem. Eng. 33(2), 582–586 (2016).  https://doi.org/10.1007/s11814-015-0192-x CrossRefGoogle Scholar
  18. 18.
    Jamal, Y.; Rabie, A.; Boulanger, B.O.: Determination of methanolysis rate constants for low and high fatty acid oils using heterogeneous surface reaction kinetic models. React. Kinet. Mech. Catal. 114(1), 63–74 (2015).  https://doi.org/10.1007/s11144-014-0780-5 CrossRefGoogle Scholar
  19. 19.
    Sharma, M.; Toor, A.P.; Wanchoo, R.: Kinetics of the esterification reaction between pentanoic acid and methanol catalyzed by noncorrosive cation exchange resin. Chem. Biochem. Eng. Q. 28(1), 79–85 (2014)Google Scholar
  20. 20.
    Ahmedzeki, N.S.; Alhassani, M.H.; Al-jandeel, H.A.: Heterogeneously catalyzed esterification reaction: experimental and modeling using Langmuir–Hinshelwood approach. IJCPE 14(4), 45–52 (2013)Google Scholar
  21. 21.
    Abbas, A.S.; Albayati, T.M.; Alismaeel, Z.T.; Doyle, A.M.: Kinetics and mass transfer study of oleic acid esterification over prepared nanoporous HY zeolite. IJCPE 17(1), 47–60 (2016)Google Scholar
  22. 22.
    Ngaosuwan, K.; Mo, X.; Goodwin, J.G.; Praserthdam, P.: Reaction kinetics and mechanisms for hydrolysis and transesterification of triglycerides on tungstated zirconia. Top. Catal. 53(11), 783–794 (2010).  https://doi.org/10.1007/s11244-010-9464-1 CrossRefGoogle Scholar
  23. 23.
    Sharma, M.; Wanchoo, R.K.; Toor, A.P.: Amberlyst 15 catalyzed esterification of nonanoic acid with 1-propanol: kinetics, modeling, and comparison of its reaction kinetics with lower alcohols. Ind. Eng. Chem. Res. 53(6), 2167–2174 (2014).  https://doi.org/10.1021/ie402407r CrossRefGoogle Scholar
  24. 24.
    Ilgen, O.: Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst. Fuel Process. Technol. 124, 134–139 (2014).  https://doi.org/10.1016/j.fuproc.2014.02.023 CrossRefGoogle Scholar
  25. 25.
    American Oil Chemist Society (AOCS) Method Ca 5a-40. https://www.scribd.com/document/270517200/Ca-5a-40-FFA. Accessed 01 July 2017
  26. 26.
    Jamal, Y.; Boulanger, B.O.: Separation of oleic acid from soybean oil using mixed-bed resins. J. Chem. Eng. Data 55(7), 2405–2409 (2010).  https://doi.org/10.1021/je900829c CrossRefGoogle Scholar
  27. 27.
    JagadeeshBabu, P.E.; Sandesh, K.; Saidutta, M.B.: Kinetics of esterification of acetic acid with methanol in the presence of ion exchange resin catalysts. Ind. Eng. Chem. Res. 50(12), 7155–7160 (2011).  https://doi.org/10.1021/ie101755r CrossRefGoogle Scholar
  28. 28.
    De Silva, E.C.L.; Bamunusingha, B.A.N.N.; Gunasekera, M.Y.: Heterogeneous kinetic study for esterification of acetic acid with ethanol. Engineer, J. of I.E.SL 47, 9–15 (2014).  https://doi.org/10.4038/engineer.v47i1.6855 CrossRefGoogle Scholar
  29. 29.
    Yaakob, A.Q.; Bhatia, S.: Esterification of palmitic acid with methanol in the presence of macroporous ion exchange resin as catalyst. IIUM Eng. J. 5(2), 35–51 (2004). http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2380

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Department of Mechanical Engineering (DME)International Islamic University (IIU)IslamabadPakistan
  3. 3.Department of Civil and Environmental EngineeringOhio Northern UniversityAdaUSA

Personalised recommendations