Advertisement

Korea-Australia Rheology Journal

, Volume 31, Issue 4, pp 241–248 | Cite as

Multi-chain slip-spring simulations for polyisoprene melts

  • Yuichi MasubuchiEmail author
  • Takashi Uneyama
Article
  • 9 Downloads

Abstract

The multi-chain slip-spring (MCSS) model is a coarse-grained molecular model developed for efficient simulations of the dynamics of entangled polymers. In this study, we examined the model for the viscoelasticity of polyisoprene (PI) melts, for which the data are available in the literature. We determined the conversion factor for the molecular weight from the fitting of the molecular weight dependence of zero-shear viscosity. According to the obtained value, we calculated the linear viscoelasticity of several linear PI melts to determine the units of time and modulus. Based on the conversion factors thus determined, we predicted linear viscoelasticity of 6-arm star PI melts, and viscosity growth under high shear for linear PI melts. The predictions were in good agreement with the data, demonstrating the validity of the method. The conversion factors determined were consistent with those reported for polystyrene melts earlier, whereas the relations between the conversion factors are still unknown.

Keywords

molecular simulations rheology entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported in part by Grant-in-Aid for Scientific Research (A) (17H01152), (B) (19H01861) and for Scientific Research on Innovative Areas (18H04483) from JSPS.

References

  1. Abdel-Goad, M., W. Pyckhout-Hintzen, S. Kahle, J. Allgaier, D. Richter, and L.J. Fetters, 2004, Rheological properties of 1,4-polyisoprene over a large molecular weight range, Macromolecules37, 8135–8144.CrossRefGoogle Scholar
  2. Auhl, D., J. Ramirez, A.E. Likhtman, P. Chambon, and C. Ferny-hough, 2008, Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights, J. Rheol.52, 801–835.CrossRefGoogle Scholar
  3. Baig, C., P.S. Stephanou, G. Tsolou, V.G. Mavrantzas, and M. Kröger, 2010a, Understanding dynamics in binary mixtures of entangled cis-1,4-polybutadiene melts at the level of primitive path segments by mapping atomistic simulation data onto the tube model, Macromolecules43, 8239–8250.CrossRefGoogle Scholar
  4. Baig, C., V.G. Mavrantzas, and M. Kröger, 2010b, Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear, Macromolecules43, 6886–6902.CrossRefGoogle Scholar
  5. Chappa, V.C., D.C. Morse, A. Zippelius, and M. Müller, 2012, Translationally invariant slip-spring model for entangled polymer dynamics, Phys. Rev. Lett.109, 148302.CrossRefGoogle Scholar
  6. Costanzo, S., Q. Huang, G. Ianniruberto, G. Marrucci, O. Hassager, and D. Vlassopoulos, 2016, Shear and extensional rhe-ology of polystyrene melts and solutions with the same number of entanglements, Macromolecules49, 3925–3935.CrossRefGoogle Scholar
  7. Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon press, Oxford.Google Scholar
  8. Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, Inc, New York.Google Scholar
  9. Gotro, J.T. and W.W. Graessley, 1984, Model hydrocarbon polymers: Rheological properties of linear polyisoprenes and hydrogenated polyisoprenes, Macromolecules17, 2767–2775.CrossRefGoogle Scholar
  10. Kremer, K. and G.S. Grest, 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys.92, 5057–5086.CrossRefGoogle Scholar
  11. Kumar, S. and R.G. Larson, 2001, Brownian dynamics simulations of flexible polymers with spring-spring repulsions, J. Chem. Phys.114, 6937–6941.CrossRefGoogle Scholar
  12. Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-plathe, 2013, Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs, J. Chem. Phys. 138, 104907.Google Scholar
  13. Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-Plathe, 2014, Reptation and constraint release dynamics in bidisperse polymer melts, J. Chem. Phys.141, 194904.CrossRefGoogle Scholar
  14. Likhtman, A.E., 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rhe-ology, and diffusion, Macromolecules38, 6128–6139.CrossRefGoogle Scholar
  15. Likhtman, A.E. and T.C.B. McLeish, 2002, Quantitative theory for linear dynamics of linear entangled polymers, Macromolecules35, 6332–6343.CrossRefGoogle Scholar
  16. Masubuchi, Y., 2014, Simulating the flow of entangled polymers, Annu. Rev. Chem. Biomol. Eng.5, 11–33.CrossRefGoogle Scholar
  17. Masubuchi, Y., 2015, Effects of degree of freedom below entanglement segment on relaxation of polymer configuration under fast shear in multi-chain slip-spring simulations, J. Chem. Phys.143, 224905.CrossRefGoogle Scholar
  18. Masubuchi, Y., 2016a, Molecular Modeling for Polymer Rheology, In: Reference Module in Materials Science and Materials Engineering, Elsevier Inc., 1–7.Google Scholar
  19. Masubuchi, Y., 2016b, PASTA and NAPLES: Rheology Simulator, In: Computer Simulation of Polymeric Materials, Springer Singapore, Singapore, 101–127.CrossRefGoogle Scholar
  20. Masubuchi, Y., 2018, Multichain slip-spring simulations for branch polymers, Macromolecules51, 10184–10193.CrossRefGoogle Scholar
  21. Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2003, Entanglement molecular weight and frequency response of sliplink networks, J. Chem. Phys.119, 6925–6930.CrossRefGoogle Scholar
  22. Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2004, Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model, Model. Simul. Mater. Sci. Eng.12, S91–S100.CrossRefGoogle Scholar
  23. Masubuchi, Y., G. Ianniruberto, and G. Marrucci, 2018, Stress undershoot of entangled polymers under fast startup shear flows in primitive chain network simulations, Nihon. Reoroji. Gakk.46, 23–28.CrossRefGoogle Scholar
  24. Masubuchi, Y., J.-I. Takimoto, K. Koyama, G. Iannir uber to, G. Marrucci, and F. Greco, 2001, Brownian simulations of a network of reptating primitive chains, J. Chem. Phys. 11 5, 4387–4394.CrossRefGoogle Scholar
  25. Masubuchi, Y., M. Langeloth, M.C. Böhm, T. Inoue, and F. Müller-Plathe, 2016, A multichain slip-spring dissipative particle dynamics simulation method for entangled polymer solutions, Macromolecules49, 9186–9191.CrossRefGoogle Scholar
  26. Masubuchi, Y. and T. Uneyama, 2018a, Comparison among multi-chain models for entangled polymer dynamics, Soft Matter14, 5986–5994.CrossRefGoogle Scholar
  27. Masubuchi, Y. and T. Uneyama, 2018b, Comparison among multi-chain simulations for entangled polymers under fast shear, ECS Trans.88, 161–167.CrossRefGoogle Scholar
  28. Masubuchi, Y. and T. Uneyama, 2019, Retardation of the reaction kinetics of polymers due to entanglement in the post-gel stage in multi-chain slip-spring simulations, Soft Matter15, 5109–5115.CrossRefGoogle Scholar
  29. Matsumiya, Y., Y. Masubuchi, T. Inoue, O. Urakawa, C.-Y. Liu, E. van Ruymbeke, and H. Watanabe, 2014, Dielectric and vis-coelastic behavior of star-branched polyisoprene: Two coarsegrained length scales in dynamic tube dilation, Macromolecules47, 7637–7652.CrossRefGoogle Scholar
  30. Matsushima, S., A. Takano, Y. Takahashi, and Y. Matsushita, 2017, Dynamic viscoelasticity of a series of poly(4-n-alkylstyrene)s and their alkyl chain length dependence, Polymer133, 137–142.CrossRefGoogle Scholar
  31. Megariotis, G., G.G. Vogiatzis, A.P. Sgouros, and D.N. Theodorou, 2018, Slip spring-based mesoscopic simulations of polymer networks: Methodology and the corresponding computational code, Polymers10, 1156.CrossRefGoogle Scholar
  32. Nafar Sefiddashti, M.H., B.J. Edwards, and B. Khomami, 2015, Individual chain dynamics of a polyethylene melt undergoing steady shear flow, J. Rheol.59, 119–153.CrossRefGoogle Scholar
  33. Padding, J.T. and W.J. Briels, 2001, Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242, J. Chem. Phys.115, 2846–2859.CrossRefGoogle Scholar
  34. Pan, G. and C.W. Manke, 2003, Developments toward simulation of entangled polymer melts by dissipative particle dynamics (DPD), Int. J. Mod. Phys. B17, 231–235.CrossRefGoogle Scholar
  35. Ramírez-Hernández, A., B.L. Peters, L. Schneider, M. Andreev, J.D. Schieber, M. Müller, M. Kröger, and J.J. de Pablo, 2018, A detailed examination of the topological constraints of lamellae-forming block copolymers, Macromolecules51, 2110–2124.CrossRefGoogle Scholar
  36. Ramírez-Hernández, A., B.L. Peters, M. Andreev, J.D. Schieber, and J.J. de Pablo, 2015, A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology, J. Chem. Phys. 143, 243147.Google Scholar
  37. Ramírez-Hernández, A., F.A. Detcheverry, B.L. Peters, V.C. Chappa, K.S. Schweizer, M. Müller, and J.J. de Pablo, 2013, Dynamical simulations of coarse grain polymeric systems: Rouse and Entangled dynamics, Macromolecules46, 6287–6299.CrossRefGoogle Scholar
  38. Sgouros, A.P., G. Megariotis, and D.N. Theodorou, 2017, SlipSpring Model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations, Macromolecules50, 4524–4541.CrossRefGoogle Scholar
  39. Stephanou, P.S., C. Baig, G. Tsolou, V. G. Mavrantzas, and M. Kröger, 2010, Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model, J. Chem. Phys.132, 124904.CrossRefGoogle Scholar
  40. Uneyama, T., 2011, Single chain slip-spring model for fast rhe-ology simulations of entangled polymers on GPU, Nihon. Reoroji. Gakk.39, 135–152.CrossRefGoogle Scholar
  41. Uneyama, T. and Y. Masubuchi, 2012, Multi-chain slip-spring model for entangled polymer dynamics, J. Chem. Phys.137, 154902.CrossRefGoogle Scholar
  42. Uneyama, T., Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A.A. Pathak, C.M. Roland, and C.M. Roland, 2009, A theoretical analysis of rheodielectric response of type-A polymer chains, J. Polym. Sci. Pt. B-Polym. Phys.47, 1039–1057.CrossRefGoogle Scholar
  43. Vogiatzis, G.G., G. Megariotis, and D.N. Theodorou, 2017, Equation of state based slip spring model for entangled polymer dynamics, Macromolecules50, 3004–3029.CrossRefGoogle Scholar
  44. Xu, X., J. Chen, and L. An, 2015, Simulation studies on architecture dependence of unentangled polymer melts, J. Chem. Phys.142, 074903.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Rheology and Springer 2019

Authors and Affiliations

  1. 1.Department of Materials PhysicsNagoya UniversityNagoyaJapan
  2. 2.Center of Computational ScienceNagoya UniversityNagoyaJapan

Personalised recommendations