Advertisement

Euler’s ratio-sum formula in projective-metric spaces

  • Árpád Kurusa
  • József Kozma
Original Paper
  • 8 Downloads

Abstract

We prove that Euler’s ratio-sum formula is valid in a projective-metric space if and only if it is either elliptic, hyperbolic, or Minkowskian.

Keywords

Projective metrics Hilbert geometry Minkowski geometry Ellipses Triangles Tangential ratio 

Mathematics Subject Classification

53A35 51M09, 52A20 

References

  1. Busemann, H.: The geometry of geodesics. Academic Press, New York (1955)zbMATHGoogle Scholar
  2. Busemann, H., Kelly, P.J.: Projective geometries and projective metrics. Academic Press, New York (1953)zbMATHGoogle Scholar
  3. Euler, L.: Geometrica et sphaerica quaedam, Memoires de lAcademie des Sciences de Saint-Petersbourg, 5 (1815), 96–114; Opera Omnia Series 1, vol. XXVI, 344–358; Original: http://eulerarchive.maa.org/docs/originals/E749.pdf; English translation: http://eulerarchive.maa.org/Estudies/E749t.pdf. Accessed 24 Sept 2018
  4. Grünbaum, B., Klamkin, M.S.: Euler’s Ratio-Sum Theorem and Generalizations, Mathematics Magazine, 79:2, 122–130, (2006) http://www.jstor.org/stable/27642919. Accessed 24 Sept 2018MathSciNetCrossRefGoogle Scholar
  5. Grünbaum, B.: Cyclic ratio sums and products, Crux Mathematicorum, 24(1), 20–25, (1998) https://cms.math.ca/crux/v24/n1/page20-25.pdf. Accessed 24 Sept 2018
  6. Kozma, J., Kurusa, Á.: Hyperbolic is the only Hilbert geometry having circumcenter or orthocenter generally. Beiträge zur Algebra und Geometrie 57(1), 243–258 (2016).  https://doi.org/10.1007/s13366-014-0233-3 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Kurusa, Á., Kozma, J.: Euler’s ratio-sum theorem revisited (submitted)Google Scholar
  8. Kurusa, Á.: Support theorems for totally geodesic radon transforms on constant curvature spaces. Proc. Am. Math. Soc. 122(2), 429–435 (1994).  https://doi.org/10.2307/2161033 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Lexell, A.J.: Solutio problematis geometrici ex doctrina sphaericorum, Acta academiae scientarum imperialis Petropolitinae, 5(1), 112–126, (1784) http://www.17centurymaths.com/contents/euler/lexellone.pdf. Accessed 24 Sept 2018
  10. Montejano, L., Morales, E.: Characterization of ellipsoids and polarity in convex sets. Mathematika 50, 63–72 (2003).  https://doi.org/10.1112/S0025579300014790 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Papadopoulos, A., Su, W.: On hyperbolic analogues of some classical theorems in spherical geometry, (2015) arXiv arXiv:1409.4742
  12. Sandifer, C.E.: 19th century Triangle Geometry (May 2006), How Euler did it, Math. Assoc. Am., (2007), pp. 19–27 http://eulerarchive.maa.org/hedi/HEDI-2006-05.pdf. Accessed 24 Sept 2018
  13. Shephard, G.C.: Euler’s Triangle Theorem, Crux Mathematicorum, 25(3), 148–153, (1999) https://cms.math.ca/crux/v25/n3/page148-153.pdf. Accessed 24 Sept 2018
  14. Szabó, Z.I.: Hilbert’s fourth problem. I. Adv. Math. 59(3), 185–301 (1986).  https://doi.org/10.1016/0001-8708(86)90056-3 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Managing Editors 2018

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations