Advertisement

Parabolicity and rigidity of two-sided hypersurfaces in Killing warped products

  • Eudes L. de Lima
  • Henrique F. de Lima
  • Eraldo A. LimaJr
  • Adriano A. Medeiros
Original Paper
  • 56 Downloads

Abstract

We extend a technique due to Romero et al. (Class Quantum Gav 30:1–13, 2013) establishing sufficient conditions to guarantee the parabolicity of a complete two-sided hypersurface immersed into a Killing warped product \(M\times _{\rho }{\mathbb {R}}\), whose base \(M^n\) has parabolic universal Riemannian covering. Afterwards, we apply our parabolicity criterium in order to obtain a rigidity result concerning these hypersurfaces, whose mean curvature is not supposed a priori be constant. Finally, parametric uniqueness results are applied to obtain suitable non-parametric ones, i.e., to the case of entire Killing graphs.

Keywords

Killing warped product Complete two-sided hypersurfaces Parabolic hypersurfaces Entire Killing graphs 

Mathematics Subject Classification

Primary 53C42 Secondary 53B30 53C50 

Notes

Acknowledgements

The authors would like to thank the referee for reading the manuscript in great detail and giving several valuable suggestions and useful comments which improved the paper. The second author is partially supported by CNPq, Brazil, Grant 303977/2015-9.

References

  1. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in \({\mathbb{S}}^2\times {\mathbb{R}}\) and \(\mathbb{H}^2\times {\mathbb{R}}\). Acta Math. 193, 141–174 (2004)MathSciNetCrossRefGoogle Scholar
  2. Ahlfors, L.V.: Sur le type dune surface de Riemann. CR. Acad. Sci. Paris 201, 30–32 (1935)MATHGoogle Scholar
  3. Alías, L.J., Dajczer, M., Ripoll, J.B.: A Bernstein-type theorem for Riemannian manifolds with a Killing field. Ann. Glob. Anal. Geom. 31, 363–373 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. Aquino, C.P., de Lima, H.F.: On the rigidity of constant mean curvature complete vertical graphs in warped products. Diff. Geom. Appl. 29, 590–596 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. Dajczer, M., Hinojosa, P., de Lira, J.H.: Killing graphs with prescribed mean curvature. Calc. Var. Partial Diff. Equ. 33, 231–248 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. de Lima, H.F., Lima Jr., E.A., Parente, U.L.: Hypersurfaces with prescribed angle function. Pac. J. Math. 269, 393–406 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. do Carmo, M.P.: Riemannian geometry. Birkhäuser Basel, New York (1992)CrossRefMATHGoogle Scholar
  8. Espinar, J.M., Rosenberg, H.: Complete constant mean curvature surfaces and Bernstein type theorems in \(M^2\times {\mathbb{R}}\). J. Diff. Geom. 82, 611–628 (2009)CrossRefMATHGoogle Scholar
  9. Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture notes in mathematics. Springer, New York (1979)CrossRefGoogle Scholar
  10. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)MathSciNetCrossRefMATHGoogle Scholar
  12. Kanai, M.: Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn. 38, 227–238 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II. Interscience, New York (1969)MATHGoogle Scholar
  14. Li, P.: Curvature and function theory on Riemannian manifolds. Surveys in Differential Geometry, vol. 7: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer (Editor: Yau S.T.), pp. 375–432. International Press, Hong Kong (2002)Google Scholar
  15. Milnor, J.: On deciding whether a surface is parabolic or hyperbolic. Am. Math. Mon. 84(1), 43–46 (1977)MathSciNetCrossRefMATHGoogle Scholar
  16. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)MathSciNetCrossRefMATHGoogle Scholar
  17. Romero, A., Rubio, R.M.: Bernstein-type theorems in a Riemannian manifold with an irrotational Killing vector field. Mediterr. J. Math. 13, 1285–1290 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. Romero, A., Rubio, R.M., Salamanca, J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes. Class. Quantum Grav. 30, 1–13 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. Rosenberg, H.: Minimal surfaces in \(M^2\times {\mathbb{R}}\). Ill. J. Math. 46, 1177–1195 (2002)MATHGoogle Scholar
  20. Rosenberg, H., Schulze, F., Spruck, J.: The half-space property and entire positive minimal graphs in \(M \times \mathbb{R}\). J. Diff. Geom. 95, 321–336 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Managing Editors 2018

Authors and Affiliations

  • Eudes L. de Lima
    • 1
  • Henrique F. de Lima
    • 2
  • Eraldo A. LimaJr
    • 3
  • Adriano A. Medeiros
    • 3
  1. 1.Unidade Acadêmica de Ciências Exatas e da NaturezaUniversidade Federal de Campina GrandeCajazeirasBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de Campina GrandeCampina GrandeBrazil
  3. 3.Departamento de MatemáticaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations