Advertisement

ZIKAVID—Zika virus infection database: a new platform to analyze the molecular impact of Zika virus infection

  • Rafael L. Rosa
  • Lucélia Santi
  • Markus Berger
  • Emanuela F. Tureta
  • André Quincozes-Santos
  • Diogo O. Souza
  • Jorge A. Guimarães
  • Walter O. Beys-da-SilvaEmail author
Article

Abstract

The recent outbreak of Zika virus (ZIKV) in Brazil and other countries globally demonstrated the relevance of ZIKV studies. During and after this outbreak, there was an intense increase in scientific production on ZIKV infections, especially toward alterations promoted by the infection and related to clinical outcomes. Considering this massive amount of new data, mainly thousands of genes and proteins whose expression is impacted by ZIKV infection, the ZIKA Virus Infection Database (ZIKAVID) was created. ZIKAVID is an online database that comprises all genes or proteins, and associated information, for which expression was experimentally measured and found to be altered after ZIKV infection. The database, available at https://zikavid.org, contains 16,984 entries of gene expression measurements from a total of 7348 genes. It allows users to easily perform searches for different experimental hosts (cell lines, tissues, and animal models), ZIKV strains (African, Asian, and Brazilian), and target molecules (messenger RNA [mRNA] and protein), among others, used in differential expression studies regarding ZIKV infection. In this way, the ZIKAVID will serve as an additional and important resource to improve the characterization of the molecular impact and pathogenesis associated with ZIKV infection.

Keywords

Zika virus Database Host Strains 

Notes

Funding information

This work was supported by the Brazilian funding agencies, Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Edital MCTIC/FNDCT-CNPq/MEC-CAPES/MS-Decit/No 14/2016, project 440763/2016-9, and Ministry of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13365_2019_799_MOESM1_ESM.csv (3.7 mb)
Supplementary Table 1 contain all the metadata. (CSV 3794 kb)
13365_2019_799_MOESM2_ESM.xlsx (19 kb)
Supplementary Table 2 contain all papers published used to create the ZIKAVID. (XLSX 19 kb)

References

  1. Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DWW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwid JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WM, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M, Rajagopal L (2018) Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24:368–374.  https://doi.org/10.1038/nm.4485 CrossRefGoogle Scholar
  2. Beaver JT, Lelutiu N, Habib R, Skountzou I (2018) Evolution of two major Zika virus lineages: implications for pathology, immune response, and vaccine development. Front Immunol 9:1640.  https://doi.org/10.3389/fimmu.2018.01640 CrossRefGoogle Scholar
  3. Beys-da-Silva WO, Rosa RL, Santi L, Berger M, Park SK, Campos AR, Terraciano P, Varela APM, Teixeira TF, Roehe PM, Quincozes-Santos A, Yates JR, Souza DO, Cirne-Lima EO, Guimarães JA (2018) Zika virus infection of human mesenchymal stem cells promotes differential expression of proteins linked to several neurological diseases. Mol Neurobiol 56:4708–4717.  https://doi.org/10.1007/s12035-018-1417-x CrossRefGoogle Scholar
  4. Bowen JR, Quicke KM, Maddur MS, O’Neal JT, McDonald CE, Fedorova NB, Puri V, Shabman RS, Pulendran B, Suthar MS (2017) Zika virus antagonizes type i interferon responses during infection of human dendritic cells. PLoS Pathog 13:e1006164.  https://doi.org/10.1371/journal.ppat.1006164 CrossRefGoogle Scholar
  5. Buathong R, Hermann L, Thaisomboonsuk B, Rutvisuttinunt W, Klungthong C, Chinnawirotpisan P, Manasatienkij W, Nisalak A, Fernandez S, Yoon I-K, Akrasewi P, Plipat T (2015) Detection of Zika virus infection in Thailand, 2012–2014. Am J Trop Med Hyg 93:380–383.  https://doi.org/10.4269/ajtmh.15-0022 CrossRefGoogle Scholar
  6. Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, Araujo ESM, de Sequeira PC, de Mendonça MCL, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, dos Santos FB, Nogueira RMR, Tanuri A, de Filippis AMB (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653–660.  https://doi.org/10.1016/s1473-3099(16)00095-5 CrossRefGoogle Scholar
  7. Chen J, Yang Y, Chen J, Zhou X, Dong Z, Chen T, Yang Y, Zou P, Jiang B, Hu Y, Lu L, Zhang X, Liu J, Xu J, Zhu T (2017) Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects. Emerg Microbes Infect 6:1–7.  https://doi.org/10.1038/emi.2017.67 Google Scholar
  8. Dick GW, Kitchen S, Haddow A (1952) Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520.  https://doi.org/10.1016/0035-9203(52)90042-4 CrossRefGoogle Scholar
  9. Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B, Pearson G, Dennis M, Hewson R (2017) Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl Trop Dis 11:e0005704.  https://doi.org/10.1371/journal.pntd.0005704 CrossRefGoogle Scholar
  10. Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap island, Federated States of Micronesia. N Engl J Med 360:2536–2543.  https://doi.org/10.1056/nejmoa0805715 CrossRefGoogle Scholar
  11. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sánchez-Seco MP, Evans MJ, Best SM, García-Sastre A (2016) Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19:882–890.  https://doi.org/10.1016/j.chom.2016.05.009 CrossRefGoogle Scholar
  12. Guirimand T, Delmotte S, Navratil V (2014) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43:D583–D587.  https://doi.org/10.1093/nar/gku1121 CrossRefGoogle Scholar
  13. Gurumayum S, Brahma R, Naorem LD, Muthaiyan M, Gopal J, Venkatesan A (2018) ZikaBase: an integrated ZIKV- human interactome map database. Virology 514:203–210.  https://doi.org/10.1016/j.virol.2017.11.007 CrossRefGoogle Scholar
  14. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau V-M, Choumet V, Briant L, Desprès P, Amara A, Yssel H, Missé D (2015) Biology of Zika virus infection in human skin cells. J Virol 89:8880–8896.  https://doi.org/10.1128/jvi.00354-15 CrossRefGoogle Scholar
  15. Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar IU, Rothlin CV, Fikrig E, Diamond MS, Iwasaki A (2017) TAM receptors are not required for Zika virus infection in mice. Cell Rep 19:558–568.  https://doi.org/10.1016/j.celrep.2017.03.058 CrossRefGoogle Scholar
  16. Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, Zhou J (2017) ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J 14:217.  https://doi.org/10.1186/s12985-017-0882-6 CrossRefGoogle Scholar
  17. Hu T, Li J, Carr MJ, Duchêne S, Shi W (2019) The asian lineage of Zika virus: transmission and evolution in asia and the americas. Virol Sin 34:1–8.  https://doi.org/10.1007/s12250-018-0078-2 CrossRefGoogle Scholar
  18. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2010) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:D576–D582.  https://doi.org/10.1093/nar/gkq901 CrossRefGoogle Scholar
  19. Jiang X, Dong X, Li S-H, Zhou Y-P, Rayner S, Xia H-M, Gao GF, Yuan H, Tang Y-P, Luo M-H (2018) Proteomic analysis of Zika virus infected primary human fetal neural progenitors suggests a role for doublecortin in the pathological consequences of infection in the cortex. Front Microbiol 9.  https://doi.org/10.3389/fmicb.2018.01067
  20. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap state, Micronesia, 2007. Emerg Infect Dis 14:1232–1239.  https://doi.org/10.3201/eid1408.080287 CrossRefGoogle Scholar
  21. Lindqvist R, Mundt F, Gilthorpe JD, Wölfel S, Gekara NO, Kröger A, Överby AK (2016) Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J Neuroinflammation 13:277.  https://doi.org/10.1186/s12974-016-0748-7 CrossRefGoogle Scholar
  22. McGrath EL, Rossi SL, Gao J, Widen SG, Grant AC, Dunn TJ, Azar SR, Roundy CM, Xiong Y, Prusak DJ, Loucas BD, Wood TG, Yu Y, Fernández-Salas I, Weaver SC, Vasilakis N, Wu P (2017) Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep 8:715–727.  https://doi.org/10.1016/j.stemcr.2017.01.008
  23. Mishra A, Vijayakumar P, Raut AA (2017) Emerging avian influenza infections: current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 36:89–107.  https://doi.org/10.1080/08830185.2017.1291640 CrossRefGoogle Scholar
  24. Mitchell RD III, Wallace AD, Hodgson E, Roe RM (2017) Differential expression profile of lncRNAs from primary human hepatocytes following DEET and fipronil exposure. Int J Mol Sci 18:2104.  https://doi.org/10.3390/ijms18102104 CrossRefGoogle Scholar
  25. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958.  https://doi.org/10.1056/nejmoa1600651 CrossRefGoogle Scholar
  26. Musso D, Gubler DJ (2016) Zika virus. Clin Microbiol Rev 29:487–524.  https://doi.org/10.1128/cmr.00072-15 CrossRefGoogle Scholar
  27. Papanikolaou N, Pavlopoulos GA, Theodosiou T, Iliopoulos I (2015) Protein–protein interaction predictions using text mining methods. Methods 74:47–53.  https://doi.org/10.1016/j.ymeth.2014.10.026 CrossRefGoogle Scholar
  28. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S, Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem EB, Scheuermann RH (2011) ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40:D593–D598.  https://doi.org/10.1093/nar/gkr859 CrossRefGoogle Scholar
  29. Przybyła P, Shardlow M, Aubin S, Bossy R, Eckart de Castilho R, Piperidis S, McNaught J, Ananiadou S (2016) Text mining resources for the life sciences. Database 2016. doi:  https://doi.org/10.1093/database/baw145
  30. Pylro VS, Oliveira FS, Morais DK, Cuadros-Orellana S, Pais FS-M, Medeiros JD, Geraldo JA, Gilbert J, Volpini AC, Fernandes GR (2016) ZIKV – CDB: a collaborative database to guide research linking sncrnas and Zika virus disease symptoms. PLoS Negl Trop Dis 10:e0004817.  https://doi.org/10.1371/journal.pntd.0004817 CrossRefGoogle Scholar
  31. Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmström J, Brunner E, Mohanty S, Lercher MJ, Hunziker PE, Aebersold R, von Mering C, Hengartner MO (2009) Comparative functional analysis of the caenorhabditis elegans and drosophila melanogaster proteomes. PLoS Biol 7:e1000048.  https://doi.org/10.1371/journal.pbio.1000048 CrossRefGoogle Scholar
  32. Schuler-Faccini L, Roehe P, Zimmer ER, Quincozes-Santos A, de Assis AM, Lima EOC, Guimarães JA, Victora C, Neto VM, Souza DO (2017) ZIKA virus and neuroscience: the need for a translational collaboration. Mol Neurobiol 55:1551–1555.  https://doi.org/10.1007/s12035-017-0429-2 CrossRefGoogle Scholar
  33. Sheridan MA, Balaraman V, Schust DJ, Ezashi T, Roberts RM, Franz AWE (2018) African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLoS One 13:e0200086.  https://doi.org/10.1371/journal.pone.0200086 CrossRefGoogle Scholar
  34. Strange DP, Green R, Siemann DN, Gale M, Verma S (2018) Immunoprofiles of human sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Sci Rep 8:8702.  https://doi.org/10.1038/s41598-018-27027-7 CrossRefGoogle Scholar
  35. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, Pereira L (2016) Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 20:155–166.  https://doi.org/10.1016/j.chom.2016.07.002 CrossRefGoogle Scholar
  36. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, Christian KM, Didier RA, Jin P, Song H, Ming G (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590.  https://doi.org/10.1016/j.stem.2016.02.016 CrossRefGoogle Scholar
  37. Yun S-I, Song B-H, Frank J, Julander J, Olsen A, Polejaeva I, Davies C, White K, Lee Y-M (2018) Functional genomics and immunologic tools: the impact of viral and host genetic variations on the outcome of Zika virus infection. Viruses 10:422.  https://doi.org/10.3390/v10080422 CrossRefGoogle Scholar
  38. Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN, Li Y, Yao B, Xu M, Xu T, Chen L, Wang Z, Feng H, Huang W-K, Yoon K, Shan C, Huang L, Qin Z, Christian KM, Shi P-Y, Xu M, Xia M, Zheng W, Wu H, Song H, Tang H, Ming G-L, Jin P (2016) Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 44:8610–8620.  https://doi.org/10.1093/nar/gkw765 CrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • Rafael L. Rosa
    • 1
    • 2
  • Lucélia Santi
    • 1
    • 2
  • Markus Berger
    • 2
  • Emanuela F. Tureta
    • 1
  • André Quincozes-Santos
    • 3
  • Diogo O. Souza
    • 3
  • Jorge A. Guimarães
    • 2
  • Walter O. Beys-da-Silva
    • 1
    • 2
    Email author
  1. 1.Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  3. 3.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations