Advertisement

Journal of NeuroVirology

, Volume 25, Issue 5, pp 634–647 | Cite as

Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease?

  • Tamas FulopEmail author
  • Jacek M. Witkowski
  • Anis Larbi
  • Abdelouahed Khalil
  • Georges Herbein
  • Eric H. Frost
Article

Abstract

HIV infection in the combination antiretroviral therapy (cART) era has become a chronic disease with a life expectancy almost identical to those free from this infection. Concomitantly, chronic diseases such as neurodegenerative diseases have emerged as serious clinical problems. HIV-induced cognitive changes, although clinically very diverse are collectively called HIV-associated neurocognitive disorder (HAND). HAND, which until the introduction of cART manifested clinically as a subcortical disorder, is now considered primarily cognitive disorder, which makes it similar to diseases like Alzheimer’s (AD) and Parkinson’s disease (PD). The pathogenesis involves either the direct effects of the virus or the effect of viral proteins such as Tat, Ggp120, and Nef. These proteins are either capable of destroying neurons directly by inducing neurotoxic mediators or by initiating neuroinflammation by microglia and astrocytes. Recently, it has become recognized that HIV infection is associated with increased production of the beta-amyloid peptide (Aβ) which is a characteristic of AD. Moreover, amyloid plaques have also been demonstrated in the brains of patients suffering from HAND. Thus, the question arises whether this production of Aβ indicates that HAND may lead to AD or it is a form of AD or this increase in Aβ production is only a bystander effect. It has also been discovered that APP in HIV and its metabolic product Aβ in AD manifest antiviral innate immune peptide characteristics. This review attempts to bring together studies linking amyloid precursor protein (APP) and Aβ production in HIV infection and their possible impact on the course of HAND and AD. These data indicate that human defense mechanisms in HAND and AD are trying to contain microorganisms by antimicrobial peptides, however by employing different means. Future studies will, no doubt, uncover the relationship between HAND and AD and, hopefully, reveal novel treatment possibilities.

Keywords

HIV infection HAND Alzheimer’s disease Amyloid beta peptide Amyloid precursor protein Antimicrobial peptide HIV Tat Retroviruses Exosomes 

Notes

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR) (No. 106634), the Société des médecins de l’Université de Sherbrooke and the Research Center on Aging of the CIUSSS-CHUS, Sherbrooke and the FRQS Audace grant to TF and EF; by the Polish Ministry of Science and Higher Education statutory grant 02-0058/07/262 to JMW; by Agency for Science Technology and Research (A*STAR) to AL and GH was supported by a grant from the Université de Franche-Comté.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research Center (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J NeuroImmune Pharmacol 4:190–199.  https://doi.org/10.1007/s11481-009-9152-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475:174–178PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alzheimer’s Association (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13:325–373.  https://doi.org/10.1016/j.jalz.2017.02.001 CrossRefGoogle Scholar
  4. Amar F, Sherman MA, Rush T, Larson M, Boyle G, Chang L, Götz J, Buisson A, Lesné SE (2017) The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal 10(478).  https://doi.org/10.1126/scisignal.aal2021 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, Aldea P, Fagan AM, Holtzman DM, Morris JC, Clifford DB (2012) 11C-PiB imaging of human immunodeficiency virus associated neurocognitive disorder. Arch Neurol 69:72–77.  https://doi.org/10.1001/archneurol.2011.761 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson AM, Croteau D, Ellis RJ, Rosario D, Potter M, Guillemin GJ, Brew BJ, Woods SP, Letendre SL (2018a) HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J Neuroimmunol 319:13–18.  https://doi.org/10.1016/j.jneuroim.2018.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson M, Kashanchi F, Jacobson S (2018b) Role of exosomes in human retroviral mediated disorders. J NeuroImmune Pharmacol 13:279–291.  https://doi.org/10.1007/s11481-018-9784-7 CrossRefPubMedGoogle Scholar
  8. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799PubMedPubMedCentralCrossRefGoogle Scholar
  9. Antonelli LR, Mahnke Y, Hodge JN, Porter BO, Barber DL, DerSimonian R, Greenwald JH, Roby G, Mican J, Sher A, Roederer M, Sereti I (2010) Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood 116:3818–3827PubMedPubMedCentralCrossRefGoogle Scholar
  10. Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226PubMedCrossRefGoogle Scholar
  11. Arendt G, Hefter H, Elsing C, Strohmeyer G, Freund HJ (1990) Motor dysfunction in HIV-infected patients without clinically detectable central-nervous deficit. J Neurol 237:362–368PubMedCrossRefGoogle Scholar
  12. Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34:11485–11503PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: indentification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585PubMedCrossRefGoogle Scholar
  14. Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gérard HC et al (2008) Chlamydophila pneumoniae and the etiology of late onset Alzheimer’s disease. J Alzheimers Dis 13:371–380.  https://doi.org/10.3233/JAD2008-13403 CrossRefPubMedGoogle Scholar
  15. Bardi G, Sengupta R, Khan MZ, Patel JP, Meucci O (2006) Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. J Neuro-Oncol 12:211–218Google Scholar
  16. Ben Haij N, Planès R, Leghmari K, Serrero M, Delobel P, Izopet J, BenMohamed L, Bahraoui E (2015) HIV-1 Tat protein induces production of proinflammatory cytokines by human dendritic cells and monocytes/macrophages through engagement of TLR4-MD2-CD14 complex and activation of NF-κB pathway. PLoS One 10:e0129425PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beyreuther K, Masters CL (1991) Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol 1:241–251PubMedCrossRefGoogle Scholar
  18. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bolós M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8:37–43PubMedCrossRefGoogle Scholar
  20. Bonavia R, Bajetto A, Barbero S, Albini A, Noonan DM et al (2001) HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun 288:301–308PubMedCrossRefGoogle Scholar
  21. Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T Jr (2015) β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16:85–98.  https://doi.org/10.1007/s10522-014-9538-8 CrossRefPubMedGoogle Scholar
  22. Bourgade K, Dupuis G, Frost EH, Fülöp T (2016a) Anti-viral properties of amyloid-β peptides. J Alzheimers Dis 54:859–878PubMedCrossRefGoogle Scholar
  23. Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T Jr (2016b) Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. J Alzheimers Dis 50:1227–1241.  https://doi.org/10.3233/JAD-150652 CrossRefPubMedGoogle Scholar
  24. Brabers NA, Nottet HS (2006) Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Investig 36:447–458CrossRefGoogle Scholar
  25. Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P, Guillemin GJ (2012) Recent rodent models for Alzheimer’s disease: clinical implications and basic research. J Neural Transm 119:173–195.  https://doi.org/10.1007/s00702-011-0731-5 CrossRefPubMedGoogle Scholar
  26. Bruno AP, De Simone FI, Iorio V, De Marco M, Khalili K, Sariyer IK, Capunzo M, Nori SL, Rosati A (2014) HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels. Cell Cycle 13:3640–3644PubMedPubMedCentralCrossRefGoogle Scholar
  27. Budka H (1986) Multinucleated giant cells in brain, a hallmark of the acquired immundeficiency syndrom (AIDS). Acta Neuropathol 69:253–258PubMedCrossRefGoogle Scholar
  28. Campbell GR, Rawat P, Bruckman RS, Spector SA (2015) Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog 11:1–24CrossRefGoogle Scholar
  29. Campion D, Pottier C, Nicolas G, Le Guennec K, Rovelet-Lecrux A (2016) Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 21:861–871PubMedCrossRefGoogle Scholar
  30. Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S (2018) HIV Neuroinfection and Alzheimer’s disease: similarities and potential links? Front Cell Neurosci 12:307.  https://doi.org/10.3389/fncel.2018.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Caporaso GL, Takei K, Gandy SE, Matteoli M, Mundigl O et al (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci 14:3122–3138PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286PubMedPubMedCentralCrossRefGoogle Scholar
  33. Catani MV, Corasaniti MT, Navarra M, Nisticò G, Finazzi-Agrò A, Melino G (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74:2373–2379PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chai Q, Jovasevic V, Malikov V, Sabo Y, Morham S, Walsh D, Naghavi MH (2017) HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 8:1522.  https://doi.org/10.1038/s41467-017-01795-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chen NC, Partridge AT, Sell C, Torres C, Martín-García J (2017) Fate of microglia during HIV-1 infection: from activation to senescence? Glia 65:431–446.  https://doi.org/10.1002/glia.23081 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuro Mol Med 12:1–12CrossRefGoogle Scholar
  38. Choy RW, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci U S A 109:E2077–E2082PubMedPubMedCentralCrossRefGoogle Scholar
  39. Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, Kauwe JS (2009) CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology 73:1982PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cole MA, Margolick JB, Cox C, Li X, Selnes OA, Martin EM, Becker JT, Aronow HA, Cohen B, Sacktor N, Miller EN (2007) Longitudinally preserved psychomotor performance in longterm asymptomatic HIV-infected individuals. Neurology 69:2213–2220PubMedCrossRefGoogle Scholar
  41. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W et al (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121PubMedPubMedCentralCrossRefGoogle Scholar
  42. Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228.  https://doi.org/10.1016/j.it.2016.12.003 CrossRefPubMedGoogle Scholar
  43. Das S, Potter H (1995) Expression of the Alzheimer amyloidpromoting factors á 1-antichymotrypsin and apolipoprotein E is induced in astrocytes by IL-1. Neuron 14:447–456PubMedCrossRefGoogle Scholar
  44. Daussy CF, Beaumelle B, Espert L (2015) Autophagy restricts HIV-1 infection. Oncotarget 6:20752–20753PubMedPubMedCentralCrossRefGoogle Scholar
  45. Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Autophagy in astrocytes: a novel culprit in lysosomal storage disorders. Autophagy 8:1871–1872PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dolei A (2006) Endogenous retroviruses and human disease. Expert Rev Clin Immunol 2:149–167PubMedCrossRefGoogle Scholar
  47. Dolei A, Uleri E, Ibba G, Caocci M, Piu C, Serra C (2015) The aliens inside human DNA: HERV-W/MSRV/syncytin-1 endogenous retroviruses and neurodegeneration. J Infect Dev Ctries 9:577–587.  https://doi.org/10.3855/jidc.6916 CrossRefPubMedGoogle Scholar
  48. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999) Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13:1249–1253PubMedCrossRefGoogle Scholar
  49. Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E, German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI) (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264:1715–1727.  https://doi.org/10.1007/s00415-017-8503-2 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, Collier AC, Gelman B, McArthur J, Morgello S, McCutchan JA, Grant I (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25:1747–1751CrossRefGoogle Scholar
  52. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33PubMedPubMedCentralCrossRefGoogle Scholar
  53. Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R (2016) Expression pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for Alzheimer’s disease. J Alzheimers Dis 53:857–873PubMedCrossRefPubMedCentralGoogle Scholar
  54. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherner M, Gelman B, Morgello S, Singer E, Grant I, Masliah E, National Neuro ATC (2009) Clinico neuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neuro-Oncol 15:360–370Google Scholar
  55. Festoff BW, Sajja RK, van Dreden P, Cucullo L (2016) HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease. J Neuroinflammation 13:194PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E (2015a) Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 13:43–54PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015b) HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35:1921–1938.  https://doi.org/10.1523/JNEUROSCI.3207-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Fields JA, Metcalf J, Overk C, Adame A, Spencer B, Wrasidlo W, Florio J, Rockenstein E, He JJ, Masliah E (2017) The anticancer drug sunitinib promotes autophagyand protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration. J Neuro-Oncol 23:290–303.  https://doi.org/10.1007/s13365-016-0502-z CrossRefGoogle Scholar
  59. Fülöp T, Herbein G, Cossarizza A, Witkowski JM, Frost E, Dupuis G, Pawelec G, Larbi A (2017) Cellular senescence, Immunosenescence and HIV. Interdiscip Top Gerontol Geriatr 42:28–46PubMedCrossRefGoogle Scholar
  60. Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barro AE (2018a) Role of microbes in the development of Alzheimer’s disease: state of the art - an international symposium presented at the 2017 IAGG Congress in San Francisco. Front Genet 9:362.  https://doi.org/10.3389/fgene.2018.00362 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fülöp T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH (2018b) Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front Aging Neurosci 10:224.  https://doi.org/10.3389/fnagi.2018.00224 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D’Arrigo C (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int J Biochem Cell Biol 44:2085–2093PubMedCrossRefGoogle Scholar
  63. Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ (2016) Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 30:591–600PubMedCrossRefGoogle Scholar
  64. Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12:272–279PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, Fuchs D, Spudich S, Blennow K, Zetterberg H (2016) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. Ebiomedicine 3:135–140.  https://doi.org/10.1016/j.ebiom.2015.11.036 CrossRefPubMedGoogle Scholar
  66. Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250(4987):1593–1596PubMedCrossRefGoogle Scholar
  67. Giunta B, Zhou Y, Hou H, Rrapo E, Fernandez F, Tan J (2008) HIV-1 TAT inhibits microglial phagocytosis of Abeta peptide. Int J Clin Exp Pathol 1:260–275PubMedPubMedCentralGoogle Scholar
  68. Giunta B, Hou H, Zhu Y, Rrapo E, Tian J et al (2009) HIV-1 tat contributes to Alzheimer’s disease-like pathology in PSAPP mice. Int J Clin Exp Pathol 2:433–443PubMedPubMedCentralGoogle Scholar
  69. Giunta B, Ehrhart J, Obregon DF, Lam L, Le L, Jin J, Fernandez F, Tan J, Shytle RD (2011) Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4:23.  https://doi.org/10.1186/1756-6606-4-23 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73:584–590PubMedCrossRefGoogle Scholar
  71. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81PubMedCrossRefGoogle Scholar
  72. Gorantla S, Gendelman HE, Poluektova LY (2012a) Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J NeuroImmune Pharmacol 7:352–362PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gorantla S, Poluektova L, Gendelman HE (2012b) Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 35:197–208PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, Vesselingh SL, Purcell DFJ (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1:463–473PubMedCrossRefGoogle Scholar
  75. Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell J, Lantos P (1996) Neuropathology of early HIV-1 infection. Brain Pathol 6(1):15CrossRefGoogle Scholar
  76. Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G, Moulignier A (2013) Encephalitis with infiltration by CD8+ lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol 23:525–533PubMedCrossRefGoogle Scholar
  77. Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 278:31261–31268PubMedCrossRefGoogle Scholar
  78. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411CrossRefGoogle Scholar
  79. Hachinski V (2019) Dementia: new vistas and opportunities. Neurol Sci.  https://doi.org/10.1007/s10072-019-3714-1 PubMedCrossRefGoogle Scholar
  80. Harding A, Gonder U, Robinson SJ, Crean S, Singhrao SK (2017) Exploring the association between Alzheimer’s disease, oral health, microbial endocrinology and nutrition. Front Aging Neurosci 9:398.  https://doi.org/10.3389/fnagi.2017.00398 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A (2017) HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  82. Herbein G (2016) TNF and HIV-1 Nef: an intimate interplay. EBioMedicine 13:25–26.  https://doi.org/10.1016/j.ebiom.2016.11.009 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Herbein G, Khan KA (2008) Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol 29:61–67.  https://doi.org/10.1016/j.it.2007.10.008 CrossRefPubMedGoogle Scholar
  84. Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799PubMedCrossRefGoogle Scholar
  85. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12.  https://doi.org/10.1016/j.bbi.2014.10.008 CrossRefPubMedGoogle Scholar
  87. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252PubMedCrossRefGoogle Scholar
  88. Hunt PW (2014) HIV and aging: emerging research issues. Curr Opin HIV AIDS 9:302–308PubMedPubMedCentralCrossRefGoogle Scholar
  89. Itabashi S, Arai H, Matsui T, Higuchi S, Sasaki H (1997) Herpes simplex virus and risk of Alzheimer’sdisease. Lancet 349:1102.  https://doi.org/10.3233/JAD-200813403 CrossRefPubMedGoogle Scholar
  90. Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 349:241–244.  https://doi.org/10.1111/j.1750-3639.1991.tb00667.x CrossRefPubMedGoogle Scholar
  91. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici K, Field H, Fulop T, Grassi C, Griffin WS, Haas J, Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur L, Lövheim H, Mancuso R, Miklossy J, Otth C, Palamara AT, Perry G, Preston C, Pretorius E, Strandberg T, Tabet N, Taylor-Robinson SD, Whittum-Hudson JA (2016) Microbes and Alzheimer’s disease. J Alzheimers Dis 51:979–984PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496PubMedPubMedCentralCrossRefGoogle Scholar
  93. Joska JA, Gouse H, Paul RH, Stein DJ, Flisher AJ (2010) Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol 16:101–114PubMedCrossRefGoogle Scholar
  94. Kim J, Yoon JH, Kim YS (2013) HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8:e77972.  https://doi.org/10.1371/journal.pone.0077972 CrossRefPubMedPubMedCentralGoogle Scholar
  95. King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV Tat and neurotoxicity. Microbes Infect 8:1347–1357PubMedCrossRefGoogle Scholar
  96. Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389PubMedGoogle Scholar
  97. Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213PubMedCrossRefGoogle Scholar
  98. Krogh KA, Green MV, Thayer SA (2014) HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr HIV Res 12:406–414PubMedCrossRefGoogle Scholar
  99. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288PubMedCrossRefGoogle Scholar
  100. Kumar A, Abbas W, Bouchat S, Gatot JS, Pasquereau S, Kabeya K, Clumeck N, De Wit S, Van Lint C, Herbein G (2016) Limited HIV-1 reactivation in resting CD4+ T cells from aviremic patients under protease inhibitors. Sci Rep 6:38313.  https://doi.org/10.1038/srep38313 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lamers SL, Fogel GB, Liu ES, Barbier AE, Rodriguez CW, Singer EJ, Nolan DJ, Rose R, McGrath MS (2018) Brain-specific HIV Nef identified in multiple patients with neurological disease. J Neuro-Oncol 24:1–15Google Scholar
  102. Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, Fulop T (2018) Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol 107:59–66.  https://doi.org/10.1016/j.exger.2017.12.019 CrossRefPubMedGoogle Scholar
  103. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li JC, Au K, Fang J, Yim HC, Chow K, Ho P, Lau AS (2011) HIV-1 trans-activator protein dysregulates IFN-signaling and contributes to the suppression of autophagy induction. AIDS 25:15–25PubMedCrossRefGoogle Scholar
  105. Liu X, Kumar A (2015) Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes. Sci Rep 5:9867PubMedPubMedCentralCrossRefGoogle Scholar
  106. Liu L, Yu J, Li L, Zhang B, Liu L, Wu CH, Jong A, Mao DA, Huang SH (2017) Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by glycoprotein 120, methamphetamine and nicotine. Sci Rep 7:40467PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lohse N, Obel N (2016) Update of survival for persons with HIV infection in Denmark. Ann Intern Med 165:749–750PubMedCrossRefGoogle Scholar
  108. Łopatniuk P, Witkowski JM (2011) Conventional calpains and programmed cell death. Acta Biochim Pol 58:287–296PubMedCrossRefGoogle Scholar
  109. Ludewig S, Korte M (2017) Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci 9:161.  https://doi.org/10.3389/fnmol.2016.00161 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499PubMedPubMedCentralGoogle Scholar
  111. Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C (2016) Targeting the brain reservoirs: toward an HIV cure. Front Immunol 7:397PubMedPubMedCentralCrossRefGoogle Scholar
  112. Meeker RB, Poulton W, Clary G, Schriver M, Longo FM (2016) Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis. Exp Neurol 275:182–198PubMedCrossRefGoogle Scholar
  113. Mentis AA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM (2017) Viruses and endogenous retroviruses in multiple sclerosis: from correlation to causation. Acta Neurol Scand 136:606–616.  https://doi.org/10.1111/ane.12775 CrossRefPubMedGoogle Scholar
  114. Miklossy J (1993) Alzheimer’s disease–a spirochetosis? Neuroreport 4:841–848PubMedCrossRefGoogle Scholar
  115. Milanini B, Valcour V (2017) Differentiating HIV-associated neurocognitive disorders from Alzheimer’s disease: an emerging issue in geriatric neuroHIV. Curr HIV/AIDS Rep 14:123–132.  https://doi.org/10.1007/s11904-017-0361-0 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mishra R, Singh SK (2013) HIV-1 Tat C modulates expression of miRNA-101 to suppress VE-cadherin in human brain microvascular endothelial cells. J Neurosci 33:5992–6000PubMedPubMedCentralCrossRefGoogle Scholar
  117. Missé D, Gajardo J, Oblet C, Religa A, Riquet N, Mathieu D, Yssel H, Veas F (2005) Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell signaling and Tat cofactor overexpression. AIDS 19:897–905PubMedCrossRefGoogle Scholar
  118. Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement.  https://doi.org/10.1016/j.jalz.2018.06.3040 CrossRefGoogle Scholar
  119. Mordelet E, Kissa K, Cressant A, Gray F, Ozden S, Vidal C, Charneau P, Granon S (2004) Histopathological and cognitive defects induced by Nef in the brain. FASEB J 18:1851–1861PubMedCrossRefGoogle Scholar
  120. Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198PubMedCrossRefGoogle Scholar
  122. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524PubMedCrossRefGoogle Scholar
  123. Neuen-Jacob E (2009) Neurotransmitter effects in human immunodeficiency virus (HIV) and simian immuno-deficiency virus (SIV) infection. AntiInflamm Antiallergy Agents Med Chem 8:153–163CrossRefGoogle Scholar
  124. Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18:489–496PubMedCrossRefGoogle Scholar
  125. Nookala AR, Kumar A (2014) Molecular mechanisms involved in HIV-1 Tat-mediated induction of IL-6 and IL-8 in astrocytes. J Neuroinflammation 11:214PubMedPubMedCentralCrossRefGoogle Scholar
  126. Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A (2017) An overview of human immunodeficiency virus type 1-associated common neurological complications: does aging pose a challenge? J Alzheimers Dis 60:S169–S193.  https://doi.org/10.3233/JAD-170473 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Noorali S, Rotar IC, Lewis C, Pestaner JP, Pace DG, Sison A, Bagasra O (2009) Role of HERV-W syncytin-1 in placentation and maintenance of human pregnancy. Appl Immunohistochem Mol Morphol 17:319–328.  https://doi.org/10.1097/PAI.0b013e31819640f9 CrossRefPubMedGoogle Scholar
  128. Nottet HS (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood - brain barrier function. J Neuro-Oncol 5:659–669Google Scholar
  129. Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N (2017) Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: new insights for diagnosis and therapeutic applications. Viruses 9.  https://doi.org/10.3390/v9070176 PubMedCentralCrossRefPubMedGoogle Scholar
  130. Ortega M, Ances BM (2014) Role of HIV in amyloid metabolism. J NeuroImmune Pharmacol 9:483–491.  https://doi.org/10.1007/s11481-014-9546-0 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ostalecki C, Wittki S, Lee JH, Geist MM, Tibroni N, Harrer T, Schuler G, Fackler OT, Baur AS (2016) HIV Nef- and Notch1-dependent endocytosis of ADAM17 induces vesicular TNF secretion in chronic HIV infection. EBioMedicine 13:294–304PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pasquereau S, Kumar A, Herbein G (2017) Targeting TNF and TNF receptor pathway in HIV-1 infection: from immune activation to viral reservoirs. Viruses 9PubMedCentralCrossRefPubMedGoogle Scholar
  133. Petrik J (2016) Immunomodulatory effects of exosomes produced by virus-infected cells. Transfus Apher Sci 55:84–91.  https://doi.org/10.1016/j.transci.2016.07.014 CrossRefPubMedGoogle Scholar
  134. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neuro-Oncol.  https://doi.org/10.1007/s13365-018-0695-4
  135. Rahimian P, He JJ (2016) Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein. J Neuro-Oncol 22:774–788Google Scholar
  136. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, Schwille P, Schulz JB, Schroeder C, Simons M, Jennings G, Knolker HJ, Simons K (2008) Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science 320:520–523PubMedCrossRefGoogle Scholar
  137. Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–135CrossRefGoogle Scholar
  138. Ricciarelli R, Fedele E (2017) The amyloid cascade hypothesis in Alzheimer’s disease: It's time to change our mind. Curr Neuropharmacol 15:926–935.  https://doi.org/10.2174/1570159X15666170116143743 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J (2019) Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission. Science 363(6423).  https://doi.org/10.1126/science.aao4827 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439PubMedCrossRefPubMedCentralGoogle Scholar
  141. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921PubMedCrossRefPubMedCentralGoogle Scholar
  142. Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32(4):723–733.  https://doi.org/10.1007/s12640-017-9776-z CrossRefPubMedPubMedCentralGoogle Scholar
  143. Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM (2018) Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS 32:1661–1667.  https://doi.org/10.1097/QAD.0000000000001858 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK (2017) HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 8:e2542.  https://doi.org/10.1038/cddis.2016.467 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Shen L, Jia J (2016) An overview of genome-wide association studies in Alzheimer’s disease. Neurosci Bull 32:183–190.  https://doi.org/10.1007/s12264-016-0011-3 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Siegel G, Gerber H, Koch P, Bruestle O, Fraering PC, Rajendran L (2017) The Alzheimer’s disease γ-secretase generates higher 42:40 ratios for β-amyloid than for p3 peptides. Cell Rep 19:1967–1976PubMedCrossRefGoogle Scholar
  147. Siliciano JD, Siliciano RF (2016) Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 126:409–414.  https://doi.org/10.1172/JCI86047 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 89(13):6075–6079PubMedPubMedCentralCrossRefGoogle Scholar
  149. Soliman ML, Geiger JD, Chen X (2017) Caffeine blocks HIV-1 Tat-induced amyloid beta production and Tau phosphorylation. J NeuroImmune Pharmacol 12:163–170.  https://doi.org/10.1007/s11481-016-9707-4 CrossRefPubMedGoogle Scholar
  150. Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, Masliah E, Levine AJ, Singer EJ, Vinters HV, Gelman BB, Morgello S, Cherner M, Grant I, Achim CL (2012) AIDS 26:2327–2335.  https://doi.org/10.1097/QAD.0b013e32835a117c CrossRefPubMedPubMedCentralGoogle Scholar
  151. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease- associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505PubMedPubMedCentralCrossRefGoogle Scholar
  152. Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, Reichelt D, Lohmann H, Husstedt IW (2013) Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 20:420–428.  https://doi.org/10.1111/ene.12006 CrossRefPubMedGoogle Scholar
  153. Su F, Bai F, Zhou H, Zhang Z (2016a) Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun 52:187–198PubMedCrossRefGoogle Scholar
  154. Su T, Wit FW, Caan MW, Schouten J, Prins M, Geurtsen GJ, Cole JH, Sharp DJ, Richard E, Reneman L, Portegies P, Reiss P, Majoie CB, Study AGC (2016b) White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS 30:2329–2339CrossRefGoogle Scholar
  155. Sun X, Chen WD, Wang YD (2015) β-amyloid: the keypeptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221PubMedPubMedCentralGoogle Scholar
  156. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 4:133–150.  https://doi.org/10.1038/nrneurol.2017 CrossRefGoogle Scholar
  157. Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39:286–298PubMedCrossRefPubMedCentralGoogle Scholar
  158. Tate BA, Mathews PM (2006) Targeting the role of the endosome in the pathophysiology of Alzheimer’s disease: a strategy for treatment. Sci Aging Knowl Environ 2006:re2CrossRefGoogle Scholar
  159. Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, Buch S (2018) HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14:1596–1619.  https://doi.org/10.1080/15548627.2018.1476810 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Thomas S, Mayer L, Sperber K (2009) Mitochondria influence Fas expression in gp120-induced apoptosis of neuronal cells. Int J Neurosci 119:157–165PubMedCrossRefPubMedCentralGoogle Scholar
  161. Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G (2016) An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement (Amst) 4:1–5.  https://doi.org/10.1016/j.dadm.2016.03.009 CrossRefGoogle Scholar
  162. Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM (2018) Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol.  https://doi.org/10.1002/jcp.27588 PubMedCrossRefGoogle Scholar
  163. Uleri E, Mei A, Mameli G, Poddighe L, Serra C, Dolei A (2014) HIV Tat acts on endogenous retroviruses of the W family and this occurs via toll-like receptor 4: inference for neuroAIDS. AIDS 28:2659–2670PubMedCrossRefPubMedCentralGoogle Scholar
  164. van der Kant R, Goldstein LS (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502–515PubMedCrossRefPubMedCentralGoogle Scholar
  165. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IRA, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16:1383–1391PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2:a006866PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wilkins HM, Swerdlow RH (2017) Amyloid precursor protein processing and bioenergetics. Brain Res Bull 133:71–79PubMedCrossRefGoogle Scholar
  168. Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19PubMedCrossRefGoogle Scholar
  169. Yap SH, Abdullah NK, McStea M, Takayama K, Chong ML, Crisci E, Larsson M, Azwa I, Kamarulzaman A, Leong KH, Woo YL, Rajasuriar R.(2017) HIV/Human herpesvirus co-infections: Impact on tryptophan-kynurenine pathway and immune reconstitution PLoS One 12e0186000.  https://doi.org/10.1371/journal.pone.0186000. eCollection 2017PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zeinolabediny Y, Caccuri F, Colombo L, Morelli F, Romeo M, Rossi A, Schiarea S, Ciaramelli C, Airoldi C, Weston R, Donghui L, Krupinski J, Corpas R, García-Lara E, Sarroca S, Sanfeliu C, Slevin M, Caruso A, Salmona M, Diomede L (2017) HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep 7:10313PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang J, Liu J, Katafiasz B, Fox H, Xiong H (2011) HIV-1 gp120-induced axonal injury detected by accumulation of β-amyloid precursor protein in adult rat corpus callosum. J NeuroImmune Pharmacol 6:650–657.  https://doi.org/10.1007/s11481-011-9259-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2019

Authors and Affiliations

  • Tamas Fulop
    • 1
    Email author
  • Jacek M. Witkowski
    • 2
  • Anis Larbi
    • 3
    • 4
  • Abdelouahed Khalil
    • 1
  • Georges Herbein
    • 5
    • 6
  • Eric H. Frost
    • 7
  1. 1.Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada
  2. 2.Department of PathophysiologyMedical University of GdanskGdanskPoland
  3. 3.Singapore Immunology Network (SIgN)Agency for Science Technology and Research (A*STAR)SingaporeSingapore
  4. 4.Department of Biology, Faculty of ScienceUniversity Tunis El ManarTunisTunisia
  5. 5.Department Pathogens & Inflammation-EPILAB, UPRES EA4266Université of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC)BesançonFrance
  6. 6.Department of VirologyCHRU BesanconBesanconFrance
  7. 7.Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada

Personalised recommendations