Advertisement

Assessing geographic differences in skulls of Neomys fodiens and Neomys anomalus using linear measurements, geometric morphometrics, and non-metric epigenetics

  • Nadja ThierEmail author
  • Hermann Ansorge
  • Clara Stefen
Original Paper
  • 18 Downloads

Abstract

Previous morphological studies on Neomys fodiens and Neomys anomalus describe a pronounced ecological variance, mainly attributed to altitudinal and/or climatic conditions especially for Neomys fodiens. The major aim of this study was to find out whether there are intraspecific geographic variations related to cranial morphometry. Two different methods were used: classical linear measurements and modern geometric morphometric 2D method. Shrew skulls from Germany and Slovakia separated into different regional groups were studied. For Neomys fodiens, the linear method showed a clearer separation than the geometric method, whereby the skull measures CBL and CORH followed Bergmann’s rule, which could be explained with an allopatric living. Both methods produced various results for the characters in which the groups differed the most. For N. anomalus, the selectivity was high in both methods, with similar results. The linear skull measures were heterogeneous, which may possibly have been caused by an interspecific competition with N. fodiens. The lengths of the unicuspid teeth of the maxilla showed the strongest variation between the regions, which might be associated with a different prey selection. Likewise, a non-metric study on N. fodiens was performed to obtain knowledge about the epigenetic variability. There was no sign for significant epigenetic impoverishment (Iev = 0.42), and the degrees of the epigenetic distances (MMD = 0.01 to 0.06) indicated a small differentiation between the N. fodiens groups. The fluctuating asymmetry (FA = 0.15 to 0.21) is rather small by comparison with other mammals. So, there is only a small indication of reduced developmental stability in all regional groups, but with an increase from south to north.

Keywords

Neomys Geometric morphometry Linear morphometry Epigenetics 

Notes

Acknowledgments

Our sincere thanks go to Dr. Doris Mörike and Dr. Stefan Merker from the Staatliche Museum für Naturkunde Stuttgart and PD Dr. Frieder Mayer from the Museum für Naturkunde Berlin for the access to the collection material. We also thank Elisabeth Orrison for proofreading the English of the manuscript and P. David Polly and the other anonymous reviewers for their insightful comments, which helped to improve the text.

Supplementary material

13364_2019_448_MOESM1_ESM.docx (60 kb)
ESM 1 (DOCX 60 kb)

References

  1. Ansorge H (1994) Anpassung oder konservative Vielfalt - Populationsdifferenzierung beim Maulwurf, Talpa europaea, nach nichtmetrischen Merkmalen. Abh. Ber. Naturkundemus. Görlitz 68:45–53Google Scholar
  2. Ansorge H (2001) Assessing non-metric skeleton characters as a morphological tool. Zoology 104:268–277CrossRefGoogle Scholar
  3. Ansorge H, Andera M, Borkenhagen P, Büchner S, Juskaitis R, Markov G (2012) Morphological approach to the genetic variability of the common dormouse Muscardinus avellanarius. Peckiana 8:265–274Google Scholar
  4. Badyaev AV, Foresman KR, Fernandes MV (2000) Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology 81:336–345CrossRefGoogle Scholar
  5. Baker KH, Hoelzel AR (2013) Fluctuating asymmetry in populations of British roe deer (Capreolus capreolus) following historical bottlenecks and founder events. Mamm Biol 78:387–391CrossRefGoogle Scholar
  6. Bastian O, Joseph H, Porada HT (2005) Oberlausitzer Heide- und Teichlandschaft - Eine landeskundliche Bestandsaufnahme im Raum Lohsa, Klitten, Großdubrau und Baruth. Böhlau, KölnGoogle Scholar
  7. Berry AC (1975) Factors affecting the incidence of non-metrical skeletal variants. J Anat 120:519–535Google Scholar
  8. Bookstein FL (1991) Morphometric tools for landmark data - geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  9. Brosius F (2006) SPSS 14. mitp, HeidelbergGoogle Scholar
  10. Carraway LN, Verts BJ (1994) Relationship of mandibular morphology to relative bite force in some Sorex from western North America. In: Merrit JF, Kirkland GL, Rose RK (eds) Advances in the biology of shrews, vol 18. Carnegie-Museum of Natural History, Special Publication, Pittsburgh, pp 201–210Google Scholar
  11. Churchfield S (1990) The natural history of shrews. Comstock Publishing Associates, IthacaGoogle Scholar
  12. Churchfield S, Sheftel BI (1994) Food niche overlap and ecological separation in a multi-species community of shrews in the Siberian taiga. J Zool 241:55–71CrossRefGoogle Scholar
  13. Dickmann CR (1988) Body size, prey size, and community structure in insectivorous mammals. Ecology 69:569–580CrossRefGoogle Scholar
  14. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, ChichesterGoogle Scholar
  15. Gilligan DM, Woodworth LM, Montgomery ME, Nurthen RK, Briscoe DA, Frankham R (2000) Can fluctuating asymmetry be used to detect inbreeding and loss of genetic diversity in endangered populations? Anim Conserv 3:97–104CrossRefGoogle Scholar
  16. Igea J, Aymerich P, Bannikova AA, Gosálbez J, Castresana J (2015) Multilocus species trees and species delimitation in a temporal context: application to the water shrews of the genus Neomys. BMC Evol Biol 15:209.  https://doi.org/10.1186/s12862-015-0485-z CrossRefGoogle Scholar
  17. Kapischke HJ (2009) Wasserspitzmaus Neomys fodiens (Pennant, 1771). In: Hauer S, Ansorge H, Zöphel U (eds). Atlas der Säugetiere Sachsens. Zentraler Broschürenversand der Sächsischen Staatsregierung, Dresden, pp 102–103Google Scholar
  18. Kraft R (2008) Mäuse und Spitzmäuse in Bayern. Ulmer, StuttgartGoogle Scholar
  19. Krushinska NL, Rychlik L (1993) Intra- and interspecific antagonistic behaviour in two sympatric species of water shrews: Neomys fodiens and N. anomalus. J Ethol 11:11–21CrossRefGoogle Scholar
  20. Krushinska NL, Koltzov NK, Rychlik L (1992) Antagonist interactions between ‘residents’ and ‘immigrants’ of sympatric water shrews: Neomys fodiens and Neomys anomalus - laboratory experiments. In: Schröpfer R, Stubbe M, Heidecke D (eds) . Semiaquatische Säugetiere. Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, pp 25–32Google Scholar
  21. Kryštufek B, Quadracci A (2008) Effects of latitude and allopatry on body size variation in Europe water shrews. Acta Theriol 53:39–46CrossRefGoogle Scholar
  22. Lazarová J (1999) Epigenetic variation and fluctuating asymmetry of the house mouse (Mus) in the Czech Republic. Folia Zool 48(Suppl. 1):37–52Google Scholar
  23. López-Fuster J, Ventura J, Miralles M, Castién E (1990) Craniometrical characteristics of Neomys fodiens (Pennant, 1771) (Mammalia, Insectivora) from the northeastern Iberian Peninsula. Acta Theriol 35:269–276CrossRefGoogle Scholar
  24. Markov G (2003) Cranial epigenetic polymorphism and population differentiation of the forest dormouse (Dryomys nitedula PALL., 1779) in Bulgaria. Acta Zool Acad Sci Hung 49(Suppl. 1):109–115Google Scholar
  25. Meinig H, Boye P, Hutterer R (2009) Rote Liste und Gesamtartenliste der Säugetiere (Mammalia) Deutschlands. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, vol 1. Wirbeltiere, Bonn-Bad Godesberg, pp 115–153Google Scholar
  26. Niethammer J (1960) Über die Säugetiere der Niederen Tauern. Mitt Zool Mus Berlin 36:408–443Google Scholar
  27. Ochocińska D, Taylor JRE (2003) Bergmann’s rule in shrews: geographical variation of body size in Palearctic: Sorex species. Biol J Linn Soc 78:365–381CrossRefGoogle Scholar
  28. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Evol Syst 17:391–421CrossRefGoogle Scholar
  29. Pankakoski E, Hanski I (1989) Metrical and non-metrical skull traits of the common shrew Sorex araneus and their use in population studies. Ann Zool Fenn 26:433–444Google Scholar
  30. Pertoldi C, Loeschcke V, Braun A, Madsen AB, Randi E (2000) Craniometrical variability and developmental stability. Two useful tools for assessing the population viability of Eurasian otter (Lutra lutra) populations in Europe. Biol J Linn Soc 70:309–323CrossRefGoogle Scholar
  31. Polly PD (2012) Geometric morphometrics. Department of Geological Sciences, Indiana University. http://www.indiana.edu/~g562/. Accessed 6 Dec 2016
  32. Popov VV, Zidarova SA (2008) Patterns of craniometric variability of Neomys fodiens and Neomys anomalus (Mammalia, Insectivora) in Bulgaria - role of abiotic and biotic factors. Acta Zool Bulg 60:171–185Google Scholar
  33. Price M (1953) The reproductive cycle of the water shrew, Neomys fodiens bicolor Shaw. Proc Zool Soc London 123:599–621CrossRefGoogle Scholar
  34. Ranyuk M, Ansorge H (2015) Low epigenetic variability of the Eurasian otter Lutra lutra (L.) from Europe to Kamchatka. Russ J Ecol 46:195–201CrossRefGoogle Scholar
  35. Ranyuk MN, Monakhov VG (2011) Variability of cranial characters in acclimatized sable (Martes zibellina) populations. Biol Bull 38:82–96CrossRefGoogle Scholar
  36. Reyment RA (2010) Morphometrics: an historical essay. In: Elewa AMT (ed) Morphometrics for Nonmorphometricians. Springer, Heidelberg, pp 9–24CrossRefGoogle Scholar
  37. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  38. Rychlik L, Zwolak R (2005) Behavioural mechanisms of conflict avoidance among shrews. Acta Theriol 50:289–308CrossRefGoogle Scholar
  39. Rychlik L, Ramalhinho G, Polly PD (2006) Response to environmental factors and competition: skull, mandible and tooth shapes in Polish water shrews (Neomys, Soricidae, Mammalia). J Zool Syst Evol Res 44:339–351CrossRefGoogle Scholar
  40. Sjøvold T (1977) Non-metrical divergence between skeletal populations. Ossa 4:1–133Google Scholar
  41. Smith MF (1981) Relationships between genetic variability and niche dimensions among coexisting species of Peromyscus. J Mammal 62:273–285CrossRefGoogle Scholar
  42. Spitzenberger F (1980) Sumpf- und Wasserspitzmaus (Neomys anomalus Cabrera 1907 und Neomys fodiens Pennant 1771) in Österreich. Mitt Abt Zool Landesmus Joanneum 9:1–39Google Scholar
  43. Spitzenberger F (1990a) Neomys anomalus (Cabrera, 1907) - Sumpfspitzmaus. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas: vol 3/1 Insektenfresser. Aula-Verlag, Wiesbaden, pp 317–333Google Scholar
  44. Spitzenberger F (1990b) Neomys fodiens (Pennant, 1771) - Wasserspitzmaus. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas: Vol. 3/1 Insektenfresser. Aula-Verlag, Wiesbaden, pp 334–374Google Scholar
  45. Tibbetts EA (2013) Condition dependence and the origins of elevated fluctuating asymmetry in quality signals. Behav Ecol 22:1166–1172Google Scholar
  46. Tomkins JL, Kotiaho JS (2001) Fluctuating asymmetry. In: Encyclopedia of Life Science. MacMillian Reference Ltd, LondonGoogle Scholar
  47. Uhlikova J (2004) Epigenetic and dental variation of the common vole, Microtus arvalis (Mammalia: Rodentia) in the Czech Republic. Folia Zool 53:157–170Google Scholar
  48. White TA, Searle JB (2008) Mandible asymmetry and genetic diversity in island populations of the common shrew, Sorex araneus. J Evol Biol 21:636–641CrossRefGoogle Scholar
  49. Wiig Ø, Bachmann L (2014) Fluctuating asymmetry and inbreeding in Scandinavian gray wolves (Canis lupus). Acta Theriol 59:399–405CrossRefGoogle Scholar
  50. Wójcik JM, Polly PD, Wojcik AM, Sikorski MD (2007) Epigenetic variation of the common shrew, Sorex araneus, in different habitats. Russ J Theriol 6:43–49CrossRefGoogle Scholar
  51. Zakharov VM, Pankakoski E, Sheftel BI, Peltonen A, Hanski I (1991) Development stability and population dynamics in the common shrew, Sorex araneus. Am Nat 138:797–810CrossRefGoogle Scholar
  52. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Elsevier, AmsterdamGoogle Scholar
  53. Zidarova SA, Popov VV (2018) Patterns of craniometric variability of six common species of shrews (Soricidae: Crocidura, Neomys, Sorex). Acta Zool Acad Sci Hung 64(3):259–276Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Bia?owie?a, Poland 2019

Authors and Affiliations

  1. 1.Senckenberg Natural History Collections DresdenMuseum of ZoologyDresdenGermany
  2. 2.Senckenberg Museum of Natural History GörlitzGörlitzGermany

Personalised recommendations