Advertisement

Feeding habits of four species of Myotis (Mammalia, Chiroptera) from Argentina

  • Santiago Gamboa AlurraldeEmail author
  • M. Mónica Díaz
Original Paper
  • 55 Downloads

Abstract

The genus Myotis is one of the most widely distributed and speciose mammalian genera, with representatives in nearly all biogeographical regions. The species of Myotis feed primarily on arthropods, except for some species that occasionally consume fish. In North American Myotis, food preference is for slow and soft-to-medium hard preys, whereas scarce or null information is available for South American species. Thirteen species of Myotis occurred in Argentina, with no previous information about its diet. The aim of this study was to analyze the diet of four species of Myotis from the Yungas forests, Argentina: M. albescens, M. dinellii, M. keaysi, and M. riparius. We also evaluated differences in diet between well-preserved and disturbed sites, sexes, and seasons. The specimens were collected in eight different localities, four well-preserved and four disturbed sites of the Yungas Forests. Through the analysis of feces, arthropod remains were identified until the lowest possible taxonomic level. Volume and frequency of occurrence percentages for each food item and the niche breadth for the species were estimated. A total of 344 pellets from 70 individuals were analyzed. The diet of these species of Myotis contained arthropods from nine orders and seven families; Lepidoptera and Diptera contributed the highest volume proportions in diet. A low niche breadth was recorded for all species. The diet was significantly influenced by site characteristics only in Myotis dinellii, being different in its consumption of arthropods between well-preserved and disturbed sites. This result showed that this species can modify its diet according to habitat quality.

Keywords

Diet Arthropodophagous bats Vespertilionidae Yungas Forests 

Notes

Acknowledgments

We wish to acknowledge all the members of PIDBA for extending their support during our field collection trips. We also thank Raquel Gandolfo, Álvaro Galbán, Paola Martín, Pablo Ramello, Bárbara Defea, and Ana Rodales for their help on the identification of arthropods. We acknowledge the support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13364_2019_431_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 33 kb)

References

  1. Aguirre LF, Herrel AF, Van Damme R, Matthysen E (2003) The implications of food hardness for diet in bats. Funct Ecol 17:201–212CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  3. Anthony ELP, Stack HM, Kunz TH (1981) Night roosting and the nocturnal time budget of the little brown bat, Myotis lucifugus: effects of reproductive status, prey density, and environmental conditions. Oecologia 51:151–156CrossRefGoogle Scholar
  4. Barclay RMR (1994) Constraints on reproduction by flying vertebrates: energy and calcium. Am Nat 144:1021–1031CrossRefGoogle Scholar
  5. Barquez RM (2006) Orden Chiroptera. In: Barquez RM, Díaz MM, Ojeda RA (eds) Mamíferos de Argentina. Sistemática y distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Mendoza, pp 57–86Google Scholar
  6. Barquez RM, Mares MA, Braun JK (1999) The bats of Argentina. Spec Publ Mus Texas Tech Univ 42:1–275Google Scholar
  7. Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in agriculture. Science 332:41–42CrossRefGoogle Scholar
  8. Bracamonte JC, Lutz MA (2013) Nuevos registros de Eumops dabbenei (Chiroptera: Molossidae) en Argentina: ampliación de la distribución y comentarios sobre su ecología. Mastozool Neotrop 20:139–142Google Scholar
  9. Braun JK, Layman QD, Mares MA (2009) Myotis albescens (Chiroptera: Vespertilionidae). Mamm Species 846:1–9CrossRefGoogle Scholar
  10. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. Editorial Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, pp 623–659Google Scholar
  11. Burkart R, Bárbaro NO, Sánchez RO, Gomez DA (1999) Eco-regiones de la Argentina. Administración de Parque Nacionales, Buenos AiresGoogle Scholar
  12. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. ACME, Buenos AiresGoogle Scholar
  13. Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, López J Jr, McCracken GF, Medellín RA, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz TH (2006) Economic values of the pest control service provided by Brazilian freetailed bats in South-Central Texas. Front Ecol Environ 4:238–243CrossRefGoogle Scholar
  14. Crawley MJ (2007) The R book. John Wiley & Sons Ltd, West SussexCrossRefGoogle Scholar
  15. Díaz MM, Flores DA, Barquez RM (1998) Instrucciones para la preparación y conservación de mamíferos. PIDBA Publicaciones Especiales, TucumanGoogle Scholar
  16. Díaz MM, Solari S, Aguirre LF, Aguiar LMS, Barquez RM (2016) Clave de identificación de los murciélagos de Sudamérica. Publicación Especial N° 2 PCMA (Programa de Conservación de los Murciélagos de Argentina), TucumanGoogle Scholar
  17. Erkert HG (1982) Ecological aspects of activity rhythms. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 201–242CrossRefGoogle Scholar
  18. ESRI (2011) ArcGIS desktop: release 10. Enviromental Systems Research Institute, RedlandsGoogle Scholar
  19. Findley JS (1972) Phenetic relationships among bats of the genus Myotis. Syst Biol 21:31–52CrossRefGoogle Scholar
  20. Freeman PW, Lemen CA (2007) Using scissors to quantify hardness of insects: do bats select for size or hardness? J Zool 271:469–476CrossRefGoogle Scholar
  21. Freeman PW, Lemen CA (2010) Simple predictors of bite force in bats: the good, the better and the better still. J Zool 282:284–290CrossRefGoogle Scholar
  22. Gamboa Alurralde S, Díaz MM (2018) Diet of Tadarida brasiliensis (Mammalia: Chiroptera) in northwestern Argentina. Acta Chiropterologica 20:221–228CrossRefGoogle Scholar
  23. Ghazali M, Moratelli R, Dzeverin I (2017) Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). J Mammal Evol 24:475–484CrossRefGoogle Scholar
  24. Giannini NP (1999) Selection of diet and elevation of two sympatric species of Sturnira in an Andean rainforest. J Mammal 80:1186–1195CrossRefGoogle Scholar
  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  26. Henry M, Thomas DW, Vaudry R, Carrier M (2002) Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J Mammal 83:767–774CrossRefGoogle Scholar
  27. Iudica CA (1995) Frugivoría en murciélagos: el frutero común (Sturnira lilium) en las Yungas de Jujuy, Argentina. In: Brown AD, Grau HR (eds) Investigación, conservación y desarrollo de las selvas subtropicales de montaña. Laboratorio de Investigaciones Ecológicas de las Yungas, Tucumán, pp 123–128Google Scholar
  28. Iudica CA, Bonaccorso FJ (1997) Feeding of the bat, Sturnira lilium, on fruits of Solanum riparium influences dispersal of this pioneer tree in forests of northwestern Argentina. Stud Neotrop Fauna Environ 32:4–6CrossRefGoogle Scholar
  29. Kaupas LA, Barclay RMR (2018) Temperature-dependent consumption of spiders by little brown bats (Myotis lucifugus), but not northern long-eared bats (M. septentrionalis), in northern Canada. Can J Zool 96:261–268CrossRefGoogle Scholar
  30. Krebs CJ (1999) Ecological methodology. Addison Welsey Longman Inc., CaliforniaGoogle Scholar
  31. Kunz TH, Oftedal OT, Robson SK, Kretzmann MB, Kirk C (1995) Changes in milk composition during lactation in three species of insectivorous bats. J Comp Physiol 164B:543–551Google Scholar
  32. Larsen RJ, Knapp MC, Genoways HH, Khan FAA, Larsen PA, Wilson DE, Baker RJ (2012) Genetic diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species. PLoS One 7:e46578CrossRefGoogle Scholar
  33. LaVal RK (1973) A revision of the Neotropical bats of the genus Myotis. Nat Hist Mus Los Angeles Cty Sci Bull 15:1–54Google Scholar
  34. Lee Y, McCracken GF (2001) Timing and variation in the emergence and return of a large colony of Mexican freetailed bats (Tadarida brasiliensis mexicana). Zool Stud 40:309–316Google Scholar
  35. Lee Y, McCracken GF (2002) Foraging activity and resource use of Brazilian free-tailed bats Tadarida brasiliensis (Molossidae). Ecosci 9:306–313CrossRefGoogle Scholar
  36. Lee Y, McCracken GF (2005) Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. J Mammal 86:67–76CrossRefGoogle Scholar
  37. López-Damián LJ (2009) Dieta de Tadarida brasiliensis mexicana en el noreste y sur de México en el contexto de la fenología del maíz (Zea mays). Unpublished master thesis, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  38. Lutz MA (2013) Relación de los ensambles de murciélagos (Mammalia: Chiroptera) y el uso de la tierra en el noreste de la región pampeana de Argentina. Ph.D. Thesis, Universidad Nacional de La PlataGoogle Scholar
  39. McCracken GF, Westbrook JK, Brown VA, Eldridge M, Federico P, Kunz TH (2012) Bats track and exploit changes in insect pest populations. PLoS One 7:e43839CrossRefGoogle Scholar
  40. Menéndez Pedroso N (2006) Abundancia y riqueza de dípteros asociados a fragmentos de diferentes tamaños de bosque maulino y plantaciones de pino aledañas. Unpublished undergraduate degree dissertation, Universidad de Chile, Santiago, ChileGoogle Scholar
  41. Moratelli R, Wilson DE (2011) A new species of Myotis Kaup, 1829 (Chiroptera, Vespertilionidae) from Ecuador. Mammal Biol 76:608–614CrossRefGoogle Scholar
  42. Moratelli R, Wilson DE (2014) A new species of Myotis (Chiroptera, Vespertilionidae) from Bolivia. J Mammal 95:E17–E25CrossRefGoogle Scholar
  43. Moratelli R, Peracchi AL, Dias D, Oliveira JÁ (2011) Geographic variation in South American populations of Myotis nigricans (Schinz, 1821) (Chiroptera, Vespertilionidae), with the description of two new species. Mammal Biol 76:592–607CrossRefGoogle Scholar
  44. Moratelli R, Gardner AL, Oliveira JA, Wilson DE (2013) Review of Myotis (Chiroptera, Vespertilionidae) from northern South America, including description of a new species. Am Mus Novit 3780:1–36CrossRefGoogle Scholar
  45. Moratelli R, Wilson DE, Gardner AL, Fisher RD, Gutierrez EE (2016) A new species of Myotis (Chiroptera: Vespertilionidae) from Suriname. Spec Publ Museum Texas Tech Univ 65:49–66Google Scholar
  46. Moratelli R, Wilson DE, Novaes RLM, Helgen KM, Gutiérrez EE (2017) Caribbean Myotis (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. J Mammal 98:994–1008CrossRefGoogle Scholar
  47. Nogueira MR, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol 23:715–723CrossRefGoogle Scholar
  48. Novaes RLM, Wilson DE, Ruedi M, Moratelli R (2018) The taxonomic status of Myotis aelleni Baud, 1979 (Chiroptera, Vespertilionidae). Zootaxa 4446:257–264Google Scholar
  49. Oliveira CM (2005) Aspectos bioecológicos do coró-das-hortaliças Aegopsis bolboceridus (Thomson) (Coleoptera: Melolonthidae) no Cerrado do Brasil Central. Planaltina, Embrapa Cerrados, Série Documentos 143:1–28Google Scholar
  50. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 8 Jan 2019
  51. Rodríguez-San Pedro A, Simonetti JA (2015) The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matix matter? Landsc Ecol 30:1561–1572CrossRefGoogle Scholar
  52. Ruedi M, Mayer F (2001) Molecular systematics of bats the genus Myotis (Vespertilionidae) suggests deterministic ecomorphology convergences. Mol Phylogenet Evol 21:436–448CrossRefGoogle Scholar
  53. Russell RC (1998) Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health. Int J Parasitol 28:955–969CrossRefGoogle Scholar
  54. Sánchez MS, Carrizo LV, Giannini NP, Barquez RM (2012a) Seasonal patterns in the diet of frugivorous bats in the subtropical rainforest of Argentina. Mammalia 76:269–275CrossRefGoogle Scholar
  55. Sánchez MS, Giannini NP, Barquez RM (2012b) Bat frugivory in two subtropical rain forests of northern Argentina: testing hypotheses of fruit selection in the Neotropics. Mammal Biol 77:22–31CrossRefGoogle Scholar
  56. Segura-Trujillo CA (2014) Dieta y gremios tróficos de los murciélagos depredadores de artrópodos de Norte y Centro América. Unpublished master dissertation, La Paz B. C. S., MexicoGoogle Scholar
  57. Segura-Trujillo CA, Lidicker WZ, Álvarez-Castañeda ST (2016) New perspectives on trophic guilds of arthropodivorous bats in North and Central America. J Mammal 92:644–654CrossRefGoogle Scholar
  58. Segura-Trujillo CA, Willig MR, Álvarez-Castañeda ST (2018) Correspondence between ecomorphotype and use of arthropod resources by bats of the genus Myotis. J Mammal 99:659–667CrossRefGoogle Scholar
  59. Shiel C, McAney C, Sullivan C, Fairley J (1997) Identification of arthropod fragments in bat droppings. Occas Publ Mamm Soc 17:1–56Google Scholar
  60. Shively R, Barboza P, Doak P, Jung TS (2018) Increased diet breadth of little brown bats (Myotis lucifugus) at their norhtern range limit: a multimethod approach. Can J Zool 96:31–38CrossRefGoogle Scholar
  61. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world. The Johns Hopkins University Press, Baltimore, pp 312–529Google Scholar
  62. Stadelmann B, Lin L-K, Kunz TH, Ruedi M (2007) Molecular phylogeny of new world Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43:32–48CrossRefGoogle Scholar
  63. Urquizo JH, Barquez RM, Díaz MM (2017) Nueva especie de Myotis (Chiroptera: Vespertilionidae) para la Argentina. Mastozool Neotrop 24:257–261Google Scholar
  64. Whitaker JO Jr (1988) Food habits of insectivorous bats. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington D.C., pp 171–179Google Scholar
  65. Whitaker JO Jr, Findley JS (1980) Foods eaten by some bats from Costa Rica and Panama. J Mammal 61:540–544CrossRefGoogle Scholar
  66. Whitaker JO Jr, Neefus C, Kunz TH (1996) Dietary variation in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). J Mammal 77:716–724CrossRefGoogle Scholar
  67. Whitaker JO Jr, McCracken GF, Siemers BM (2009) Food habits analysis of insectivorous bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. The Johns Hopkins University Press, Maryland, pp 567–592Google Scholar
  68. Wilson DE (2008) Genus Myotis. In: Gardner AL (ed) Mammals of South America. Marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, Chicago, pp 468–480Google Scholar
  69. Wolda H (1988) Insect seasonality: why? Annual Rev Ecol Syst 19:1–18CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Bia?owie?a, Poland 2019

Authors and Affiliations

  • Santiago Gamboa Alurralde
    • 1
    • 2
    Email author
  • M. Mónica Díaz
    • 1
    • 2
    • 3
  1. 1.Programa de Investigaciones de Biodiversidad Argentina (PIDBA), Programa de Conservación de los Murciélagos de Argentina (PCMA), Facultad de Ciencias Naturales e IMLUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)San Miguel de TucumánArgentina
  3. 3.Fundación Miguel LilloSan Miguel de TucumánArgentina

Personalised recommendations