Advertisement

Mammal Research

, Volume 64, Issue 2, pp 271–278 | Cite as

Summer behavior and diurnal activity of mountain vizcachas (Lagidium viscacia) in two colonies of Northwestern Patagonia

  • Gladys I. GalendeEmail author
  • Estela Raffaele
Original Paper
  • 23 Downloads

Abstract

The mountain vizcacha (Lagidium viscacia) is a specialist of rocky habitats with colonies distributed along elevation gradients. Knowledge about its behavior is scarce and populations in northern Patagonia are declining. This is the first study describing the behavior and summer diurnal activity of two mountain vizcacha colonies under natural conditions. We registered by scan sampling the activities of 15 individuals during the period of 5 days. Vizcachas performed typical behaviors of rock specialists and allocated most of their time to foraging near the rock shelter (34%) and resting (26%). Behaviors such as locomotion (16%) and social interactions (10%) were important. Allogrooming (4.5%), vigilance (3%), and dust-bathing (1%) occupied a relatively small percentage of activities. In summer, the diurnal activity presented a bimodal distribution and was inversely related to the mean daytime air temperature, with a maximum peak between 8:00 and 9:00 h. Main activities such as foraging, resting, and locomotion were concentrated in the morning and at sunset. The behavioral responses suggest that the activity of this rodent in summer is influenced by thermal conditions. These results are a first important step in order to understand future vizcacha responses to climate change.

Keywords

Rock-specialist Behavior Rodents Foraging Temperature Daytime activity 

Notes

Acknowledgements

We thank Mauro Tamonne for help with fieldwork and Susan Walker and Silvina Ippi, and Emerson Viera for comments and improvements to the manuscript. We also thank the student field assistants.

Funding information

This study was financially support provided by CONICET (PIP 5066) and the National University of Comahue (grant UNC-B126).

Supplementary material

13364_2018_410_MOESM1_ESM.jpg (6.2 mb)
ESM 1 (JPG 6380 kb)
13364_2018_410_MOESM2_ESM.jpg (4.1 mb)
ESM 2 (JPG 4238 kb)
13364_2018_410_MOESM3_ESM.jpg (6 mb)
ESM 3 (JPG 6194 kb)
13364_2018_410_MOESM4_ESM.jpg (3.7 mb)
ESM 4 (JPG 3787 kb)
13364_2018_410_MOESM5_ESM.jpg (1.5 mb)
ESM 5 (JPG 1516 kb)

References

  1. Boyles J, Seebacher F, Smit B, McKechnie A (2011) Adaptive thermoregulation in endotherms may alter responses to climate change. Integr Comp Biol 51:676–690CrossRefGoogle Scholar
  2. Bozinovic F, Vásquez A (1999) Patch use in a diurnal rodent: handling and searching under thermoregulatory costs. Funct Ecol 13:602–610CrossRefGoogle Scholar
  3. Bozinovic F, Lagos JA, Vasquez RA, Kenagy GJ (2000) Time and energy use under thermoregulatory constraints in a diurnal rodent. J Therm Biol 25:251–256CrossRefGoogle Scholar
  4. Branch L (1993) Intergroup and intragroup spacing in the plain vizcacha, Lagostomus maximus. J Mammal 74:890–900CrossRefGoogle Scholar
  5. Bustos C (2006) Características climáticas del campo anexo Pilcaniyeu (Río Negro). Comunicación técnica Instituto Nacional de Tecnología Agropecuaria Centro Regional Patagonia Norte 25:1–6Google Scholar
  6. Bustos C (2009) La temperatura media en Río Negro dentro de un marco de calentamiento global. Presencia 53:1–4Google Scholar
  7. Cortés A, Rau JR, Miranda E, Jimémez JE (2002) Hábitos alimentarios de Lagidium viscacia y Abrocoma cinerea: dos roedores sintópicos en ambientes altoandino del norte de Chile. Rev Chil Hist Nat 75:583–593CrossRefGoogle Scholar
  8. Ebensperger LA (2000) Dustbathing and intra-sexual communication of social dues, Octodon degus (Rodentia: Octodontidae). Rev Chil Hist Nat 73:359–365CrossRefGoogle Scholar
  9. Galende GI (1998) El chinchillón patagónico. Rev Pat Silv 4:16–19Google Scholar
  10. Galende GI (2010) Patrones de uso de recursos alimentarios y espaciales del chinchillón (Lagidium viscacia) y la liebre europea (Lepus europaeus) en roquedales del NO Patagónico. Dissertation Universidad Nacional de La PlataGoogle Scholar
  11. Galende GI, Grigera D (1998) Relaciones alimentarias de Lagidium viscacia (Rodentia, Chinchillidae) con herbívoros introducidos en el Parque Nacional Nahuel Huapi, Argentina. Iheringia Sér Zool 84:3–10Google Scholar
  12. Galende GI, Raffaele E (2008) Space use of a non-native species, the European hare (Lepus europaeus), in habitats of the southern vizcacha (Lagidium viscacia) in Northwestern Patagonia, Argentina. Eur J Wildl Res 54:299–304.  https://doi.org/10.1007/s10344-007-0148-5 CrossRefGoogle Scholar
  13. Galende GI, Raffaele E (2012) Diet selection of the southern vizcacha (Lagidium viscacia): a rock specialist in north western Patagonian steppe, Argentina. Acta Theriol 7:333–341.  https://doi.org/10.1007/s13364-012-0078-9 CrossRefGoogle Scholar
  14. Galende GI, Raffaele E (2013) Foraging behaviour and spatial use of a native rock-specialist the Southern vizcacha (Lagidium viscacia) and the exotic European hare (Lepus europaeus) in rocky outcrops of NW Patagonia, Argentina. Acta Theriol 58:305–313.  https://doi.org/10.1007/s13364-012-0123-8 CrossRefGoogle Scholar
  15. Galende GI, Raffaele E (2016) Predator feeding ecology on Patagonian rocky outcrops: implications for colonies of mountain vizcacha (Lagidium viscacia). Stud Neotropical Fauna Environ 51:104–111.  https://doi.org/10.1080/01650521.2016.1185270 Google Scholar
  16. Galende GI, Úbeda C (1993) Aspectos del comportamiento individual y familiar del chinchillón Lagidium viscacia (chinchillidae). VIII JAM. SAREM San Carlos de Bariloche pp 52–53Google Scholar
  17. Hoeck HN (1975) Differential feeding behaviour of the sympatric hyrax Procavia johnstoni and Heterohyrax brucei. Oecologia 22:15–47CrossRefGoogle Scholar
  18. Kenagy GJ, Vásquez RA, Nespolo RF, Bozinovic F (2002a) Daily and seasonal limits of time and temperature on surface activity of degus. Rev Chil Hist Nat 75:567–581Google Scholar
  19. Kenagy GJ, Vásquez RA, Nespolo RF, Bozinovic F (2002b) A time-energy analysis of daytime surface activity in degus, Octodon degus. Rev Chil Hist Nat 75:149–156Google Scholar
  20. Kenagy GJ, Vásquez R, Barnes BM, Bozinovic F (2004) Microstructure of summer activity bouts of degus in a thermally heterogeneous habitat. J Mammal 85:260–267CrossRefGoogle Scholar
  21. Kleiman D (1974) Patterns of behavior in hystricomorph rodents. J Zool:171–209Google Scholar
  22. Lehner P (1979) Handbook of ethological methods, 1st edn. Garland STPM, New YorkGoogle Scholar
  23. León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–144Google Scholar
  24. Long R, Bowyer T, Porter W, Mathewson P, Monteith K, KIE J (2014) Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecol Monogr 84:513–532CrossRefGoogle Scholar
  25. Mares MA, Lacher TE (1987) Ecological, morfological, and behavioral convergence in rock-dweling mammals. In: Hugh H, Genoways G (eds) Current mammalogy. Plenum Publishing Corporation, New York, pp 307–348CrossRefGoogle Scholar
  26. Mason T, Brivio F, Stephens PA, Apollonio M, Grignolio S (2017) The behavioral trade-off between thermoregulation and foraging in a heat-sensitive species. Behav Ecol 28:908–918.  https://doi.org/10.1093/beheco/arx057 CrossRefGoogle Scholar
  27. Mc Cain C, King B (2014) Body size and activity times mediate mammalian responses to climate change. Glob Chang Biol 20:1760–1769.  https://doi.org/10.1111/gcb.12499 CrossRefGoogle Scholar
  28. Milling C, Rachlow J, Johnson T, Forbey J, Shipley L (2017) Seasonal variation in behavioral thermoregulation and predator avoidance in a small mammal. Behav Ecol 28:1236–1247.  https://doi.org/10.1093/beheco/arx084 CrossRefGoogle Scholar
  29. Noy Meir I (1974) Desert ecosystems: higher trophic levels. Annu Rev Ecol Evol Syst 5:195–214CrossRefGoogle Scholar
  30. Nutt KJ (2007) Socioecology of rock-dwelling rodents. In: Wolf JO, Sherman PW (eds) Rodent societies: an ecological and evolutionary perspective. Chicago University Press, Chicago, pp 35–48Google Scholar
  31. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  32. Pearson O (1948) Life of mountain Vizcachas in Perú. J Mammal 29:345–374CrossRefGoogle Scholar
  33. Puig S, Videla E, Cona M, Monge S, Roig V (1998) Diet of the mountain vizcacha (Lagidium viscacia Molina, 1782) and food availability in the northern Patagonia, Argentina. Mamm Biol 63:228–238Google Scholar
  34. Puig S, Videla F, Cona MI, Monge SA (2007) Diet of the brown hare (Lepus europaeus) and food availability in northern Patagonia (Mendoza, Argentina). Mamm Biol 72:240–250CrossRefGoogle Scholar
  35. Reus Ruiz ML (2006) Caracterización del habitat y composición de la dieta de Lagidium viscacia (Chinchillidae), en la Puna-San Juan-Argentina. Dissertation Universidad Nacional de San JuanGoogle Scholar
  36. Rowe R, Terry R, Rickart E (2011) Environmental change and declining resource availability for small-mammal communities in the Great Basin. Ecology 92:1366–1375CrossRefGoogle Scholar
  37. Smith A (1974) The distribution and dispersal of pikas: influences of behavior and climate. Ecol Lett 55:368–376Google Scholar
  38. Speakman J, Król E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746Google Scholar
  39. Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Front Biosci 16(4):1428–1444.  https://doi.org/10.2741/3797 CrossRefGoogle Scholar
  40. Tirado C, Cortes A, Bozinovic F (2007) Metabolic rate, thermoregulation and water balance in Lagidium viscacia inhabiting the arid Andean plateau. J Therm Biol 32:220–226CrossRefGoogle Scholar
  41. Torres-Contreras H, Bozinovic F (1997) Food selection in an herbivorous rodent: balancing nutrition with thermoregulation. Ecol Lett 78:2230–2237CrossRefGoogle Scholar
  42. Verta G (2017) Patrones de actividad del chinchillón, chivo doméstico y carnívoros en dos sitios de Patagonia Norte. Dissertation, Universidad Nacional del ComahueGoogle Scholar
  43. Walker SR (2001) Effects of landscape structure on the distribution of mountain vizcachas (Lagidium viscacia) in the Patagonian Steppe. Dissertation University of FloridaGoogle Scholar
  44. Walker SR, Ackerman G, Schachter-Broide J, Pancotto V, Novaro AJ (2000a) Habitat use by mountain vizcachas (Lagidium viscacia Molina, 1782) in the Patagonia steppe. Mamm Biol 65:293–300Google Scholar
  45. Walker SR, Pancotto V, Schachter-Broide J, Ackerman G, Novaro AJ (2000b) Evaluation of a fecal-pellet index of abundance for mountain vizcachas (Lagidium viscacia). Mastozool Neotrop 7:89–94Google Scholar
  46. Walker SR, Novaro AJ, Branch LC (2003) Effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia). Landsc Ecol 18:187–194CrossRefGoogle Scholar
  47. Weir BJ (1971) Some notes on reproduction in the Patagonia Mountain viscachas Lagidium boxi (Mammalia; Rodentia). J Zool 164:463–467CrossRefGoogle Scholar
  48. Zar JH (1999) Biostatistical analysis, 6th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  1. 1.Department of Zoology, Bariloche Regional University CenterNational University of ComahueBarilocheArgentina
  2. 2.Laboratory EcotonoINIBIOMA - National University of Comahue-CONICETBarilocheArgentina

Personalised recommendations