Advertisement

Mammal Research

, Volume 64, Issue 2, pp 279–288 | Cite as

Causes of death of beavers (Castor fiber) from eastern Germany and observations on parasites, skeletal diseases and tooth anomalies—a long-term analysis

  • Clara StefenEmail author
Original Paper
  • 79 Downloads

Abstract

The Eurasian beaver, Castor fiber, was nearly extirpated, and in Germany, the relict population at the Middle Elbe, was strictly protected. In the 1930s, the collection and analysis of carcasses of this then-endangered species began in Zerbst, Anhalt, and since 1957 was continued at the Zoological Institute of the University of Halle, Saxony-Anhalt. Records of varying detail from 1282 beavers found dead were recorded up to the year 2009. Here, this unique and valuable dataset is analysed coherently with the focus on the main causes of death separated by age class, sex, month and decade. Traffic accidents have been the major cause of mortality overall since the 1980s, while infections and inflammations have been the main natural cause, with fluctuating frequency during the decades and a peak in the 1950s. With the increased population size and distribution of beavers, routine collection and analysis of cadavers ceased in Halle in 2009. Here, it is argued however that irrespective of the conservation status of beavers, the regular post-mortem surveillance and analysis, of at least regional samples, allows for general health monitoring and provides knowledge about the prevalence of pathogens and parasites and their occurrence, or emergence, and information about contamination with toxins. Additionally, the specimens can contribute to collections for future studies.

Keywords

Infections Parasites Skeletal diseases: osteoporosis and exostosis Tooth and jaw anomalies Traffic 

Notes

Acknowledgements

Special thanks are due to all the people who volunteered to monitor beavers as well as the responsible people in administrative bodies and the Zoological Institute Halle which has collected the beaver carcasses over a long time period. Several preparators including Mr. H.-J. Altner and other specialists like microbiologists, entomologists, toxicologists etc. were involved in the dissections and in some of the analyses. Without their work, the data would not exist today. Gratitude goes to Dr. K. Schneider for giving access to the data sheets in the museum records and supervising the student intern, V. Nickel, who transferred part of the data to the table. I also would like to thank Dr. F. Steinheimer, director of the Central Repository of Natural Science Collections of the University in Halle, for the permission to use and study the data. Mrs. E. Orrison, Dresden, checked the English. The editor and anonymous reviewers offered helpful comments that improved the manuscript.

Supplementary material

13364_2018_405_MOESM1_ESM.doc (75 kb)
Supplementary Table 1 (DOC 75 kb)
13364_2018_405_MOESM2_ESM.doc (205 kb)
Supplementary Table 2 (DOC 205 kb)
13364_2018_405_MOESM3_ESM.wbk (228 kb)
Supplementary Table 3 (WBK 228 kb)
13364_2018_405_MOESM4_ESM.doc (60 kb)
Supplementary Table 4 (DOC 59 kb)
13364_2018_405_Fig4_ESM.png (433 kb)
Fig. S1

Frequency (%) of beavers of different age groups (AG) A) AG 0 &1, B) AG 2 & 4 found in different months by sex: F = female, M = male. Basis: carcasses found in each age class with known month of finding. The number of the sample of each group is given (n=) (PNG 433 kb)

13364_2018_405_MOESM5_ESM.eps (3.9 mb)
High resolution image (EPS 4043 kb)
13364_2018_405_Fig5_ESM.png (147 kb)
Fig S2

Frequency of beavers found dead over the years by age class (PNG 146 kb)

13364_2018_405_MOESM6_ESM.eps (2.1 mb)
High resolution image (EPS 2104 kb)
13364_2018_405_Fig6_ESM.png (101 kb)
Fig. S3

Frequency (%) of the occurrence of the skeletal diseases exostosis (exost), osteoporosis (osteop) and tooth defects (toothd), as well as of the parasites trematodes (trem), mites and beaver beetles (beaverb) by decade. Data for all age classes are given in Table S3 (PNG 100 kb)

13364_2018_405_MOESM7_ESM.eps (1.3 mb)
High resolution image (EPS 1338 kb)

References

  1. Batbold J, Batsaikhan N, Shar S, Amori G, Hutterer R, Kryštufek B, Yigit N, Mitsain G, Palomo LJ (2008) Castor fiber. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Accessed 05 May 2015
  2. Campbell-Palmer R, Rosell F (2010) Conservation of the Eurasian beaver Castor fiber: an olfactory perspective. Mammal Rev 40:293–312CrossRefGoogle Scholar
  3. Caughley G (1977) Analysis of vertebrate populations. Wiley, LondonGoogle Scholar
  4. Collins C, Kays R (2011) Causes of mortality in north American populations of large and medium-sized mammals. Anim Conserve 14:174–483Google Scholar
  5. Demiaszkiewicz AW, Lachowicz J, Kuligowska I, Pyziel AM, Bełżecki G, Miltko R, Kowalik B, Gogola W, Giżejewski Z (2014) Endoparasits of the European beaver (Castor fiber L. 1758) in north-eastern Poland. Bull Vet Inst Pulawy 58:223–227CrossRefGoogle Scholar
  6. Dolch D, Heidecke D, Teubner J, Teubner J (2002) Der Biber im Land Brandenburg. NundL 11:220–234Google Scholar
  7. Eberhardt LL (1985) Assessing the dynamics of wild populations. J Wildl Manag 49:997–1012CrossRefGoogle Scholar
  8. Ellarson RS, Hickey JH (1952) Beaver trapped by tree. J Mammal 33:482–483CrossRefGoogle Scholar
  9. Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Nat Acad Sci 90:8150–8153CrossRefGoogle Scholar
  10. Frahnert S (1998) Zur Stellung des Bibers (Castoridae: Castor) im System der Nagetiere (Rodentia). Eine craniogenetische Studie zur Ethmoidalregion sciuroganther Rodentia. Verlag Wissenschaft und Technik, Berlin, p 150Google Scholar
  11. Frahnert S (2000) Wachstumsbedingte Proportionsveränderungen am Schädel des Bibers, Castor fiber L., 1758 (Rodentia, Castoridae): Taxonomische Bedeutung und Diskussion funktioneller Aspekte. Bonn zool Beitr 49:131–153Google Scholar
  12. Frahnert S (2001) Evolution of adaptions for a semiaquatic lifestyle in Castor (Mammalia, Rodentia): deductions from the cranium. Säugetierkd Inf 5 H 25:25–34Google Scholar
  13. Frahnert S, Heidecke D (1992) Kariometrische Analyse eurasischer Biber Castor fiber L. (Rodentia, Castoridae)—Erste Ergebnisse. Semiaquat Säugetiere Wiss Beitr Univ Halle 1992:175–189Google Scholar
  14. Freye HA (1952) Bemerkungen zum Genitalsystem des männlichen Bibers, Castor fiber L. Wiss Z Univ Halle Wittenberg math nat 2:911–915Google Scholar
  15. Freye HA (1954) Beiträge zur funktionellen Anatomie des Biberskelettes. Wiss Z Halle Wittenberg math nat 3:1101–1136Google Scholar
  16. Friedrich H (1925) Tuberkulose bei den Elbebibern. St Hubertus 43:10Google Scholar
  17. Frosch C, Kraus RH, Angst C, Allgöwer R, Michaux J, Teubner J, Nowak C (2014) The genetic legacy of multiple beaver reintroductions in Central Europe. PLoS One 9:e97619CrossRefGoogle Scholar
  18. Gabryś G, Ważna A (2003) Subspecies of the European beaver Castor fiber Linnaeus, 1758. Acta Theriol 48:433–439CrossRefGoogle Scholar
  19. Gaillard JM, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. TREE 13:58–63Google Scholar
  20. Goodman G, Girling S, Pizzi R, Meredith A, Rosell F, Campbell-Palmer R (2012) Establishment of a health surveillance program for reintroduction of the Eurasian beaver (Castor fiber) into Scotland. J Wildl Dis 48:971–978CrossRefGoogle Scholar
  21. Grubešić M, Margeletić J, Čirović D, Vucelja M, Bjedov L, Burazerović J, Tomljanović K (2015) Analysis of beaver (Castor fiber L.) mortalitiy in Croatia and Serbia. J Forestry Soc Croatia 139:137–143 [in Croatian with English summary]Google Scholar
  22. Hacking MA, Sileo L (1974) Yersinia enterocolitica and Yersinia pseudotuberculosis from wildlife in Ontari. J Wildl Dis 10:452–457CrossRefGoogle Scholar
  23. Halley DJ, Rosell F (2002) The beaver’s reconquest of Eurasia: status, population development and management of a conservation success. Mammal Rev 32:153–178CrossRefGoogle Scholar
  24. Halley DJ, Rosell F, Saveljev A (2012) Population and distribution of Eurasian beaver (Castor fiber). Balt For 18:168–175Google Scholar
  25. Harthuhn M (2014) Biber als Landschaftsgestalter in Hessen. http://www.haus-im-moos.de/uploads/media/Harthun_Mark__Biber_in_Hessen__Biberfachtagung_2014.pdf. Accessed 07 Jul 2015
  26. Hauer S, Ansorge H, Zinke O (2002) Mortality patterns of otters (Lutra lutra) from eastern Germany. J Zool (Lond) 256:361–368CrossRefGoogle Scholar
  27. Heidecke D, Ibe P (1997) Der Elbebiber. Biologie und Lebensweise. In: DessauGoogle Scholar
  28. Heidecke D, Dolch J, Teubner J (2003) Zur Bestandsentwicklung von Castor fiber albicus Matschie, 1907 (Rodentia, Castoridae). Denisa 9:123–130Google Scholar
  29. Heisey DM, Fuller TK (1985) Evaluation of survival and cause specific mortality rates using telemetry data. J Wildl Manag 49:668–674CrossRefGoogle Scholar
  30. Heisey DM, Patterson BR (2006) A review of methods to estimate cause-specific mortality in presence of competing risks. J Wildl Manag 70:1544–1555CrossRefGoogle Scholar
  31. Hinze G (1933–38) Die anhaltische Zentrale für Biberforschung. Ber naturw Ver Zerbst 1933–1938:24–28Google Scholar
  32. Hinze G (1950) Der Biber. Akademie Verlag, BerlinGoogle Scholar
  33. Hinze G (1953) Bestand des Elbe-Bibers, Castor fiber albicus Matschie, 1907. Säugetierkd Mitt 1:175Google Scholar
  34. Hitchkock HB (1954) Felled tree kills beaver (Castor canadensis). J Mammal 35:452CrossRefGoogle Scholar
  35. Horn S, Teubner J, Teubner J, Heidecke D (2010) Mitochondrial DNA of beavers (Castor) in Germany. Artenschutzreport 26(2010):72–78Google Scholar
  36. Horn S, Durka W, Wolf R, Ermala A, Stubbe A, Stubbe M, Hofreiter M (2011) Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species. PLoS One 6:1–9Google Scholar
  37. Jancke S, Giere P (2011) Patterns of otter Lutra lutra road mortality in a landscape abundant in lakes. Eur J Wildl Res 57:373–381CrossRefGoogle Scholar
  38. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  39. Kneis P, Brose T, Herzog S (2013) Bestandsentwicklung und Besiedlungsergebnis des Bibers Castor fiber albicus im sächsischen Naturschutzgebiet Königsbrücker Heide nach zwanzig Jahren Prozessschutz. Säugetierkd Inf 9 H 46:35–56Google Scholar
  40. Lindenmayer DB, Likens GE, Andersen A, Bowman D, Bull CM, Burns E et al (2012) Value of long-term ecological studies. Austral Ecology 37:745–757CrossRefGoogle Scholar
  41. López G, López-Parra M, Garrote G, Fernández L, del Rey-Wamba T, Arenas-Rojas R et al (2014) Evaluating mortality rates and causalities in a critically endangered felid across its whole distribution range. Eur J Wildl Res 60:359–366CrossRefGoogle Scholar
  42. Meinig H, Boye P, Hutterer R (2009) Rote Liste und Gesamtartenliste der Säugetiere (Mammalia) Deutschlands. Naturschutz und Biologische Vielfalt 70:115–153Google Scholar
  43. Nitsche KA (1996) Über Unfälle des Bibers (Castor fiber et Castor canadensis) beim Baumfällen. Säugetierkd Mitt 37:157–160Google Scholar
  44. Nitsche KA (2009) Beginn der Todesursachenforschung am Elbe-Biber (Castor fiber albicus MATSCHIE, 1907) - die Totfund-Kartothek von Prof. Dr. Gustav Hinze. Beitr Jagd- u Wildforsch 34:209–217Google Scholar
  45. Nolet BA, Rosell F (1998) Comeback of the beaver Castor fiber: an overview of old and new conservation problems. Biol Conserv 83:165–173CrossRefGoogle Scholar
  46. Nolet BA, Broekhuizen S, Dorrestein GM, Rienks KM (1997) Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to the Netherlands. J Zool (Lond) 241:35–42CrossRefGoogle Scholar
  47. O'Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural populations. TREE 3:254–259Google Scholar
  48. Parker H, Steifetten Ø, Uren G, Rosell F (2013) Use of linear and areal habitat models to establish and distribute beaver Castor fiber harvest quotas in Norway. Fauna norvegica 33:29–34CrossRefGoogle Scholar
  49. Philcox CK, Grogan AL, Macdonald DW (1999) Patterns of otter Lutra lutra road mortality in Britain. J Appl Ecol 36:748–761CrossRefGoogle Scholar
  50. Piechocki R (1962) Die Todesursachen der Elbe-Biber (Castor fiber albicus Matschie 1907) unter besonderer Berücksichtigung funktioneller Wirbelsäulenstörungen. Nova Act LC 25(158):1–75Google Scholar
  51. Piechocki R (1977a) Ökologische Todesursachenforschung am Elbebiber (Castor fiber albicus). Beitr Jagd- u Wildforsch 10:332–341Google Scholar
  52. Piechocki R (1977b) Zahnanomalien beim Elbebiber Castor fiber albicus. Hercynia NF 14:187–195Google Scholar
  53. Piechocki R (1986) Osteologische Kriterien zur Altersbestimmung des Elbebibers Castor fiber albicus. Zool Abh Mus Tierk Dresden 41:177–183Google Scholar
  54. Piechocki R, Stiefel A (1977) Zahndurchbruch und Zahnwechsel beim Elbebiber, Castor fiber albicus. Anat Anz 142:374–384Google Scholar
  55. Rosell F, Nolet BA (1997) Factors affecting scent marking behavior in the European beaver. J Chem Ecol 23:673–689CrossRefGoogle Scholar
  56. Rosell F, Parker H, Kile NB (1996) Dødsårsaker hos bever. [Causes of mortality in beaver (Castor fiber & canadensis)]. Fauna 49:34–46Google Scholar
  57. Rosell F, Bozser O, Collen P, Parker H (2005) Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Rev 35:248–276CrossRefGoogle Scholar
  58. Schneider K (2012) Publikationsliste von Dr. Dietrich Heidecke. Säugetierkd Inf 8 H 44:290–298Google Scholar
  59. Stefen C (2009) Intraspecific variability of beaver teeth (Castoridae: Rodentia). Zool J Linnean Soc 155:926–936CrossRefGoogle Scholar
  60. Steineck T, Sieber J (2003) Ergebnisse pathologischer Untersuchungen bei Bibern (Castor fiber L.). Denisia 9:131–133Google Scholar
  61. Stiefel A, Piechocki R (1986) Circanuelle Zuwachslinien im Molarenzement des Bibers (Castor fiber) als Hilfsmittel für exacte Altersbestimmungen. Zool Abh Mus Tierk Dresden 41:165–175Google Scholar
  62. Stocker G (1978) Tod eines Bibers, Castor fiber Linné, 1758, durch gefällten Baum. Säugetierkd Mitt 26:237–239Google Scholar
  63. Stubbe M (2011) In memoriam Dr. Dietrich Heidecke (1945-2011). Säugetierkd Inf 7 H 43:187–189Google Scholar
  64. Tuljapurkar S, Caswell H (1997) Structured-population models in marine, terrestrial, and freshwater systems. Chapman & Hall, New YorkCrossRefGoogle Scholar
  65. Véron G (1992) Histoire biogéographique du castor d’Europe, Castor fiber (Rodentia, Mammalia). Mammalia 56:87–108CrossRefGoogle Scholar
  66. Weber A, Weber J (2013) Biber—Totfundanalytik im Naturpark Drömling, Sachsen-Anhalt. Säugtierkd Inf 9 H 47:131–138Google Scholar
  67. Wiesel L (1929) Beitrag zur Morphologie der Biberarten Z. Morph Ökol 14:421–512CrossRefGoogle Scholar
  68. Zinke O, Reusse P, Kramp T, Peters T, Ricklinkat A (2013) Todesursachen vom Elbebiber (Castor fiber albicus Matschie, 1907) aus Ostsachsen und Südbrandenburg im Zeitraum 1990 bis 2011. Säugetierkd Inf 9 H 47:153–158Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  1. 1.Senckenberg Naturhistorische Sammlungen DresdenMuseum für TierkundeDresdenGermany

Personalised recommendations