Advertisement

Mammal Research

, Volume 64, Issue 2, pp 175–182 | Cite as

How can climate change affect the potential distribution of common genet Genetta genetta (Linnaeus 1758) in Europe?

  • David CampsEmail author
  • Dani Villero
  • Jordi Ruiz-Olmo
  • Lluís Brotons
Original Paper
  • 59 Downloads

Abstract

The common genet Genetta genetta is a carnivore of African origin introduced in Europe at least 13 centuries ago. Its distribution, located in the southwest of the continent, is chiefly constrained by climatic factors. With this premise, and taking into account the existing climate change projections, our goal was to assess possible changes in climatic suitability for common genet in Europe in the future. The maximum entropy statistical method was used to evaluate the potential effects of two greenhouse gas scenarios-low and high emissions-of an average ensemble of six different global circulation models. Projections showed that a large increase in climatically suitable habitat for common genet in continental Europe is likely in the next decades. In this way, the species range may expand within Europe to the east and north. The fact that the common genet may be favoured in a scenario of temperature increase is compatible with the origin of the species associated with hotter climates in Africa. However, despite these results, bioclimatic models do not represent the complete biotic and ecological niche of the species (e.g. competition, predation or dispersal ability), and a full understanding of potential future expansions should include factors that also determine the presence of the species at finer local scales. Bearing this in mind, we have to interpret our results as a first step towards the potential for species distribution change in the near future, but further work should incorporate environmental variability beyond climate in future projection assessments.

Keywords

Climate change Climatically suitable habitat Genetta genetta Greenhouse gas scenarios Species distribution model 

Notes

Acknowledgements

We thank everyone who has contributed to data collection of genet occurrences. Three anonymous reviewers provided constructive suggestions that improved a final version of this manuscript.

References

  1. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232CrossRefGoogle Scholar
  2. Anon (2001) Climate change 2001. In: The Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefGoogle Scholar
  4. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397CrossRefGoogle Scholar
  5. Araújo MB, Guilhaumon F, Neto DR, Pozo I, Calmaestra R (2011) Impactos, Vulnerabilidad y Adaptación al Cambio Climático de la Biodiversidad Española. 2 Fauna de Vertebrados. Dirección general de medio Natural y Política Forestal. Ministerio de Medio Ambiente, y Medio Rural y Marino, MadridGoogle Scholar
  6. Beutel TS, Beeton RJS, Baxter GS (1999) Building better wildlife-habitatmodels. Ecography 22:219–223CrossRefGoogle Scholar
  7. Calzada J (2007) Genetta genetta (Linnaeus, 1758). In: Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad. SECEM-SECEMU, Madrid, pp 330–332Google Scholar
  8. Camps D (2015) La gineta. Monografías Zoológicas, Serie Ibérica, vol. 2. Tundra Ediciones, ValenciaGoogle Scholar
  9. Camps D, Villero D, Ruiz-Olmo J, Brotons L (2016) Niche constraints to the northwards expansion of the common genet (Genetta genetta, Linnaeus 1758) in Europe. Mamm Biol 81:399–409CrossRefGoogle Scholar
  10. Camps D, Ruiz-Olmo J, Delibes M, Aymerich M, Camacho E (2017) Reproductive parameters of the common genet Genetta genetta (Linnaeus, 1758) in Southwest Europe. Mamm Res 62:259–265CrossRefGoogle Scholar
  11. Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46CrossRefGoogle Scholar
  12. Clevenger AP (1993) Status of martens and genets in the Balearic and Pityusic Islands: Spain. IUCN Small Carniv Conserv 9:18–19Google Scholar
  13. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786CrossRefGoogle Scholar
  14. Delibes M (1999) Genetta genetta. In: Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krystufek B, Reijnders PJH, Spitzenberger F, Stubbe M, Thissen JBM, Vohralík V, Zima J (eds) The atlas of European mammals. Academic Press, Oxford, pp 352–353Google Scholar
  15. Delibes M, Centeno-Cuadros A, Muxart V, Delibes G, Ramos-Fernández J, Morales A (2017) New insights into the introduction of the common genet, Genetta genetta (L.) in Europe. Archaeol Anthropol Sci.  https://doi.org/10.1007/s12520-017-0548-8
  16. Deniz A, Toros H, Incecik S (2011) Spatial variations of climate indices in Turkey. Int J Climatol 31:394–403CrossRefGoogle Scholar
  17. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  19. Franklin J (2009) Mapping species distributions: spatial inference and prediction, 1st edn. Cambridge University Press, New YorkGoogle Scholar
  20. Gaubert P, Jiguet F, Bayle P, Angelici FM (2008) Has the common genet (Genetta genetta) spread into South-Eastern France and Italy? Ital Zool 75:43–57CrossRefGoogle Scholar
  21. Gaubert P, Machordom A, Morales A, López-Bao JV, Veron G, Amin M, Barros T, Basuony M, Djagoun CAMS, Do Linh San E, Fonseca C, Geffen E, Ozkurt SO, Cruaud C, Couloux A, Palomares F (2011) Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the strait of Gibraltar. J Biogeogr 38:341–358CrossRefGoogle Scholar
  22. Gaubert P, Carvalho F, Camps D, Do Linh San E (2015a) Genetta genetta The IUCN Red List of Threatened Species 2015.  https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T41698A45218636.en. Accessed 12 Sept 2017
  23. Gaubert P, Cerro I, Centeno-Cuadros A, Palomares F, Fournier P, Fonseca C, Paillat JP, Godoy JA (2015b) Tracing historical introductions in the Mediterranean basin: the success story of the common genet (Genetta genetta) in Europe. Biol Invasions 17:1897–1913CrossRefGoogle Scholar
  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  25. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  26. Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13:469–471CrossRefGoogle Scholar
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  28. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefGoogle Scholar
  29. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794CrossRefGoogle Scholar
  30. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–422CrossRefGoogle Scholar
  31. Ibáñez I, Clark JS, Dietze MC, Feeley K, Hersh M, LaDeau S, McBride A, Welch NE, Wolosin MS (2006) Predicting biodiversity change: outside the climate envelope, beyond the species-area curve. Ecology 87:1896–1906CrossRefGoogle Scholar
  32. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, SwitzerlandGoogle Scholar
  33. Isaac JL (2009) Effects of climate change on life history: implications for extinction risk in mammals. Endanger Species Res 7:115–123CrossRefGoogle Scholar
  34. Jennings AP, Veron G (2009) Family Viverridae. In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world. vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 174–224Google Scholar
  35. Léger F, Ruette S (2010) La répartition de la genette en France. Faune Sauvage 287:16–22Google Scholar
  36. Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816CrossRefGoogle Scholar
  37. Mawdsley JR, O'Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089CrossRefGoogle Scholar
  38. McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823CrossRefGoogle Scholar
  39. Papeş M, Cuzin F, Gaubert P (2015) Niche dynamics in the European ranges of two African carnivores reflect their dispersal and demographic histories. Biol J Linn Soc 114:737–751CrossRefGoogle Scholar
  40. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113CrossRefGoogle Scholar
  41. Pearson RG, Dawson TP, Liu C (2004) Modeling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298CrossRefGoogle Scholar
  42. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WW, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501CrossRefGoogle Scholar
  43. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  44. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  45. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western hemisphere. Proc Natl Acad Sci 109:8606–8611CrossRefGoogle Scholar
  46. Schneider SH (1996) Encyclopaedia of climate and weather. Oxford University Press, New YorkGoogle Scholar
  47. Thomas CD, Cameron A, Green RE, Bakkenes B, Beaumont LJ, Collingham YC, Erasmus BFN, Ferriera De Siqueira M, Grainger A, Hannah L, Hughes L, Graham B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefGoogle Scholar
  48. Townsend PA (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605CrossRefGoogle Scholar
  49. Trbojević I, Trbojević T, Malešević D, Krofel M (2018) The golden jackal (Canis aureus) in Bosnia and Herzegovina: density of territorial groups, population trend and distribution range. Mamm Res 63:341–348.  https://doi.org/10.1007/s13364-018-0365-1 CrossRefGoogle Scholar
  50. Virgós E, Romero T, Mangas JG (2001) Factors determining “gaps” in the distribution of a small carnivore, the common genet (Genetta genetta), in Central Spain. Can J Zool 79:1544–1551CrossRefGoogle Scholar
  51. Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’. Q Rev Biol 86:75–96CrossRefGoogle Scholar
  52. Willis KJ, Whittaker RJ (2002) Species diversity scale matters. Science 295:1245–1248CrossRefGoogle Scholar
  53. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biol Rev 88:15–30CrossRefGoogle Scholar
  54. Woldemeskel FM, Sharma A, Sivakumar B, Mehrotra R (2014) A framework to quantify GCM uncertainties for use in impact assessment studies. J Hydrol 519:1453–1465CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • David Camps
    • 1
    Email author
  • Dani Villero
    • 2
  • Jordi Ruiz-Olmo
    • 3
  • Lluís Brotons
    • 2
    • 4
    • 5
  1. 1.Directorate-General for Environmental Policy, Ministry of Territory and Sustainability, Government of CataloniaBarcelonaSpain
  2. 2.InForest Jru (CTFC-CREAF), Crta. Sant Llorenç de MorunysSolsonaSpain
  3. 3.Directorate-General of the Natural Environment and Biodiversity. Ministry of Agriculture, Livestock, Fisheries, Food and Natural Environment, Government of CataloniaBarcelonaSpain
  4. 4.CREAFCerdanyola del VallésSpain
  5. 5.CSICCerdanyola del VallésSpain

Personalised recommendations