Advertisement

Mammal Research

, Volume 64, Issue 1, pp 63–69 | Cite as

Moderate genetic variability and no genetic structure within the European golden jackal (Canis aureus) population in Hungary

  • Szilvia Kusza
  • Krisztina Nagy
  • József Lanszki
  • Miklós Heltai
  • Csaba Szabó
  • Sylwia D. Czarnomska
Original Paper

Abstract

Demography of the golden jackal (Canis aureus) was affected by various events in the past, but today jackal populations are increasing throughout Europe. Despite the fact that it is one of the most rapidly spreading mammals in Europe, previous genetic studies detected low genetic diversity among and within populations. The Hungarian landscape is not highly varied; however, it is in the middle of the country’s territory that the jackal’s number is significantly increasing. Therefore, the main goal of our research was to further investigate the genetic diversity and population structure of the Hungarian golden jackal population based on a larger sample size than in previous studies ever, expecting that individuals from genetically differentiated subpopulations might meet in the area studied. Seventy golden jackals from the most populated area, Western Hungary, were studied with regard to genetic variability, differentiation, and structure as revealed by 385-bp-long mitochondrial control region sequences and 10 nuclear canine microsatellite loci. There was no variation at all in the mtDNA CR sequences, and nuclear variability was low (average observed and expected heterozygosity of 0.348 and 0.447, respectively). Furthermore, no obvious genetic structuring was detected in the studied population using GENELAND and PCA analyses. The present regional genetic structure and diversity of the Hungarian golden jackal is consistent with the previous results; however, it is the first analysis based on a relatively large sample size. We concluded that further molecular genetic studies are needed with a more specific marker set to have more accurate knowledge on rate of hybridization and genetic structure in golden jackal populations across Hungary and Europe.

Keywords

Canis aureus Microsatellite mtDNA Hungary Population structure 

Notes

Acknowledgements

The authors thank Kornél Ács, Zsolt Bende and other professional hunters for sample collection. Mohammad Reza Ashrafzadeh and Zoltán Bagi are thanked for technical help. The publication is supported by the EFOP-3.6.3-VEKOP-16-2017-00008 project. The project is co-financed by the European Union and the European Social Fund.

Supplementary material

13364_2018_390_Fig3_ESM.png (164 kb)
Figure S1

(PNG 163 kb)

13364_2018_390_MOESM1_ESM.tif (1.2 mb)
High resolution image (TIF 1208 kb)
13364_2018_390_Fig4_ESM.png (184 kb)
Figure S2

(PNG 184 kb)

13364_2018_390_MOESM2_ESM.tif (1.2 mb)
High resolution image (TIF 1208 kb)
13364_2018_390_Fig5_ESM.png (30 kb)
Figure S3

(PNG 30 kb)

13364_2018_390_MOESM3_ESM.tif (15.9 mb)
High resolution image (TIF 16318 kb)
13364_2018_390_Fig6_ESM.png (641 kb)
Figure S4

(PNG 641 kb)

13364_2018_390_MOESM4_ESM.tif (16 mb)
High resolution image (TIF 16408 kb)

References

  1. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. PNAS 101(10):3490–3494.  https://doi.org/10.1073/pnas.0306582101 Google Scholar
  2. Arnold J, Humer A, Heltai M, Murariu D, Spassov N, Hackländer K (2012) Current status and distribution of golden jackals Canis aureus in Europe. Mammal Rev 42(1):1–11.  https://doi.org/10.1111/j.1365-2907.2011.00185.x Google Scholar
  3. Ashrafzadeh MR, Naghipour AA, Haidarian M, Khorozyan I (in press) Modeling the response of an endangered flagship predator to climate change in Iran. Mamm Res.  https://doi.org/10.1007/s13364-018-0384-y
  4. Banea OC, Krofel M, Červinka J, Gargarea P, Szabó L (2012) New records, first estimates of densities and questions of applied ecology for jackals in Danube Delta Biosphere Reserve and hunting terrains from Romania. Acta Zool Bul 64(4):353–366Google Scholar
  5. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40(1):193–216.  https://doi.org/10.1146/annurev.ecolsys.110308.120324 Google Scholar
  6. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014Google Scholar
  7. Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, Böhm M (2013) Wildlife comeback in Europe: the recovery of selected mammal and bird species. Final report to rewilding Europe by ZSL. BirdLife International and the European Bird Census Council, LondonGoogle Scholar
  8. Demeter A, Spassov N (1993) Canis aureus Linnaeus, 1758. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas. Wiesbaden, Aula-Verlag, pp 107–138Google Scholar
  9. Do C, Waples RS, Peel D, Macbeth GM, Tillet BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214.  https://doi.org/10.1111/1755-0998.12157 Google Scholar
  10. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361.  https://doi.org/10.1007/s12686-011-9548-7 Google Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x Google Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  13. Fabbri E, Caniglia R, Galov A, Arbanasić H, Lapini L, Bošković I, Florijančić T, Vlasseva A, Ahmed A, Mirchev RL, Randi E (2014) Genetic structure and expansion of golden jackals (Canis aureus) in the north-western distribution range (Croatia and eastern Italian Alps). Conserv Genet 15(1):187–199.  https://doi.org/10.1007/s10592-013-0530-7 Google Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587Google Scholar
  15. Galov A, Fabbri E, Caniglia R, Arbanasić H, Lapalombella S, Florijančić T, Bošković I, Galaverni M, Randi E (2015) First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R Soc Open Sci 2:150450.  https://doi.org/10.1098/rsos.150450 Google Scholar
  16. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486.  https://doi.org/10.1093/oxfordjournals.jhered.a111627 Google Scholar
  17. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation. The correlated allele frequencies model revisited. Bioinformatics 24(19):2222–2228.  https://doi.org/10.1093/bioinformatics/btn419 Google Scholar
  18. Guillot G, Mortier F, Estoup A (2005) Geneland: a program for landscape genetics. Mol Ecol Notes 5(3):712–715.  https://doi.org/10.1111/j.1471-8286.2005.01031.x Google Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Heltai M, Szűcs E, Lanszki J, Szabó L (2004) Az aranysakál (Canis aureus Linnaeus, 1758) új előfordulásai Magyarországon. (latest data on the distribution of jackal in Hungary). Állattani közlemények 89(2):43–52Google Scholar
  21. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1–2):87–112.  https://doi.org/10.1111/j.1095-8312.1999.tb01160.x Google Scholar
  22. Ibis O, Aksöyek E, Özcan S, Tez C (2015) A preliminary phylogenetic analysis of golden jackals (Canis aureus) (Canidae: Carnivora: Mammalia) from Turkey based on mitochondrial D-loop sequences. Vertebr Zool 65(3):391–397Google Scholar
  23. Ivanov G, Karamanlidis AA, Stojanov A, Melovski D, Avukatov V (2016) The re-establishment of the golden jackal (Canis aureus) in FYR Macedonia: implications for conservation. Mamm Biol 81(3):326–330.  https://doi.org/10.1016/j.mambio.2016.02.005 Google Scholar
  24. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405.  https://doi.org/10.1093/bioinformatics/btn129/ Google Scholar
  25. Koepfli KP, Pollinger J, Godinho R, Robinson J, Lea A, Hendricks S, Schweizer RM, Thalmann O, Silva P, Fan Z, Yurchenko AA, Dobrynin P, Makunin A, Cahill JA, Shapiro B, Álvares F, Brito JC, Geffen E, Leonard JA, Helgen KM, Johnson WE, O'Brien SJ, Van Valkenburgh B, Wayne RK (2015) Genome-wide evidence reveals that African and Eurasian golden jackals are distinct species. Curr Biol 25(16):2158–2165.  https://doi.org/10.1016/j.cub.2015.06.060 Google Scholar
  26. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191.  https://doi.org/10.1111/1755-0998.12387 Google Scholar
  27. Kowalczyk R, Kołodziej-Sobocińska M, Ruczyńska I, Wójcik JM (2015) Range expansion of the golden jackal (Canis aureus) into Poland: first records. Mamm Res 60(4):411–414.  https://doi.org/10.1007/s13364-015-0238-9 Google Scholar
  28. Krofel M, Giannatos G, Ćirovič D, Stoyanov S, Newsome TM (2017) Golden jackal expansion in Europe: a case of mesopredator release triggered by continent-wide wolf persecution? Hystrix 28(1):1–7.  https://doi.org/10.4404/hystrix-28.1-11819 Google Scholar
  29. Krystufek B, Murariu D, Kurtonur C (1997) Present distribution of the golden jackal Canis aureus in the Balkans and adjacent regions. Mamm Rev 27(2):109–114.  https://doi.org/10.1111/j.1365-2907.1997.tb00375.x Google Scholar
  30. Lanszki J, Schally G, Heltai M, Ranc N (2018) Golden jackal expansion in Europe: first telemetry evidence of a natal dispersal. Mamm Biol 88:81–84.  https://doi.org/10.1016/j.mambio.2017.11.011 Google Scholar
  31. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051.  https://doi.org/10.1111/j.1365-294X.2010.04688.x Google Scholar
  32. Luikart G, Allendorf FW, Corunet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247Google Scholar
  33. Macdonald DW (1983) The ecology of carnivore social behavior. Nature 301(5899):379–384.  https://doi.org/10.1038/301379a0 Google Scholar
  34. Magory Cohen T, King R, Dolev A, Boldo A, Lichter-Peled A, Kahila Bar-Gal G (2013) Genetic characterization of populations of the golden jackal and the red fox in Israel. Conserv Genet 14(1):55–63.  https://doi.org/10.1007/s10592-012-0423-1 Google Scholar
  35. Moehlman PD (1987) Social organization in jackals. Am Sci 75(4):366–375Google Scholar
  36. Moura AE, Tsingarska E, Dąbrowski MJ, Czarnomska SD, Jędrzejewska B, Pilot M (2013) Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves. Conserv Genet 15:405–417.  https://doi.org/10.1007/s10592-013-0547-y Google Scholar
  37. Mucci N, Arrendal J, Ansorge H, Bailey M, Bodner M, Delibes M, Ferrando A, Fournier P, Fournier C, Godoy JA, Hajkova P, Hauer S, Heggberget TM, Heidecke D, Kirjavainen H, Krueger HH, Kvaloy K, Lafontaine L, Lanszki J, Lemarchand C, Liukko UM, Loeschcke V, Ludwig G, Madsen AB, Mercier L, Ozolins J, Paunovic M, Pertoldi C, Piriz A, Prigioni C, Santos-Reis M, Luis TS, Stjernberg T, Schmid H, Suchentrunk F, Teubner J, Tornberg R, Zinke O, Randi E (2010) Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conserv Genet 11(2):583–599.  https://doi.org/10.1007/s10592-010-0054-3 Google Scholar
  38. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  39. Pyšková K, Storch D, Horáček I, Kauzál O, Pyšek P (2016) Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat. ZooKeys 641:151–163.  https://doi.org/10.3897/zookeys.641.10946 Google Scholar
  40. Quignon P, Rimbault M, Robin S, Galibert F (2012) Genetics of canine olfaction and receptor diversity. Mamm Genome 23(1–2):132–143.  https://doi.org/10.1007/s00335-011-9371-1 Google Scholar
  41. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for statistical computing, ISBN: 3–900051–07-0. Available online at http://www.R-project.org/
  42. Ranc N, Alvares F, Banea OC, Berce T, Cagnacci F, Červinka J, Ćirovic D, Cosic N, Giannatos G, Hatlauf J, Heltai M, Ivanov G, Lanszki J, Lapini L, Maiorano L, Melovski D, Migli D, Mladenovic J, Pankov IA, Penezic A, Petrova A, Šálek M, Selanec I, Selimovic A, Stojanov A, Szabó L, Trbojevic I, Trbojevic T, Krofel M (2017) The golden jackal (Canis aureus) in Europe: predicting habitat suitability of a rapidly establishing carnivore. 33rd IUGB Congress, Montpellier, France, pp 320–322Google Scholar
  43. Raymond M, Rousset F (1995) Genepop (version 3.1): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  44. Rutkowski R, Krofel M, Giannatos G, Ćirović D, Männil P, Volokh AM, Lanszki J, Heltai M, Szabó L, Banea OC, Yavruyan E, Hayrapetyan V, Kopaliani N, Miliou A, Tryfonopoulos GA, Lymberakis P, Penezić A, Pakeltytė G, Suchecka E, Bogdanowicz W (2015) A European concern? Genetic structure and expansion of golden jackals (Canis aureus) in Europe and the Caucasus. PLoS One 10(11):e0141236.  https://doi.org/10.1371/journal.pone.0141236 Google Scholar
  45. Šálek M, Červinka J, Banea OC, Krofel M, Ćirović D, Selanec I, PenezićA GS, Riegert J (2014) Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur J Wildl Res 60(2):193–200.  https://doi.org/10.1007/s10344-013-0765-0 Google Scholar
  46. Schmitt T (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool 4:11.  https://doi.org/10.1186/1742-9994-4-11 Google Scholar
  47. Simon C (1991) Molecular systematics at the species boundary: exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA. In book: Molecular Techniques in Taxonomy. pp 33–71.  https://doi.org/10.1007/978-3-642-83962-7_4.
  48. Sommer R, Benecke N (2005) Late-Pleistocene and Early Holocene history of the canid fauna of Europe (Canidae). Mamm Biol 70(4):227–241.  https://doi.org/10.1016/j.mambio.2004.12.001 Google Scholar
  49. Szabó L, Heltai M, Lanszki J, Szűcs E (2007) An indigenous predator, the golden jackal (Canis aureus L.1758) spreading like an invasive species in Hungary. Bull USAMV-CN 64(1–2):230–235.  https://doi.org/10.15835/buasvmcn-asb:64:1-2:2250 Google Scholar
  50. Szabó L, Heltai M, Szűcs E, Lanszki J, Lehoczki R (2009) Expansion range of the golden jackal in Hungary between 1997 and 2006. Mammalia 73(4):307–311Google Scholar
  51. Trouwborst A, Krofel M, Linnell JDC (2015) Legal implications of range expansions in a terrestrial carnivore: the case of the golden jackal (Canis aureus) in Europe. Biodivers Conserv 24(10):2593–2610.  https://doi.org/10.1007/s10531-015-0948-y Google Scholar
  52. Van Oosterhout C, Hutchinson WFD, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x Google Scholar
  53. Yumnam B, Negi T, Maldonado JE, Fleischer RC, Jhala YV (2015) Phylogeography of the golden jackal (Canis aureus) in India. PlosOne 10(9):e0138497.  https://doi.org/10.1371/journal.pone.0138497 Google Scholar
  54. Zachos FE, Cirovic D, Kirschning J, Otto M, Hartl GB, Petersen B, Honnen AC (2009) Genetic variability, differentiation, and founder effect in golden jackals (Canis aureus) from Serbia as revealed by mitochondrial DNA and nuclear microsatellite loci. Biochem Genet 47(3–4):241–250.  https://doi.org/10.1007/s10528-009-9221-y Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • Szilvia Kusza
    • 1
  • Krisztina Nagy
    • 1
  • József Lanszki
    • 2
  • Miklós Heltai
    • 3
  • Csaba Szabó
    • 1
  • Sylwia D. Czarnomska
    • 4
  1. 1.Institute of Animal Science, Biotechnology and Nature ConservationUniversity of DebrecenDebrecenHungary
  2. 2.Carnivore Ecology Research GroupKaposvár UniversityKaposvárHungary
  3. 3.Institute for Wildlife ConservationSzent István UniversityGödöllőHungary
  4. 4.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations