Advertisement

Mammal Research

, Volume 64, Issue 1, pp 53–62 | Cite as

Response of two sympatric carnivores to human disturbances of their habitat: the bobcat and coyote

  • Minerva Flores-Morales
  • Jorge VázquezEmail author
  • Amando Bautista
  • Luisa Rodríguez-Martínez
  • Octavio Monroy-VilchisEmail author
Original Paper

Abstract

Information about human land uses, producing the least impact on wildlife and their habitats, is crucial to develop management strategies allowing coexistence between human beings and wildlife. We investigated the responses of the bobcat (Lynx rufus) and the coyote (Canis latrans) to different types of human activity by assessing the abundance, habitat use, and activity patterns of these species in response to extraction of firewood, grazing, and crop farming within their habitat. Photographic records of both carnivores were obtained from 18 camera-trap stations, distributed evenly within these three types of habitat disturbances. The highest relative abundance index for both carnivores was obtained at firewood extraction sites, followed by grazing sites, and croplands. The probability of carnivore sightings varied between species by type of disturbance and by season. The probability of bobcat sightings was highest within firewood extraction sites, with no effect of season, whereas that of the coyote was highest during winter, with no effect of type of human disturbance. An analysis of habitat use revealed that both carnivores avoided cropland sites. Activity patterns were similar, which suggests an absence of temporal segregation between these species; moreover, the activity patterns of both carnivores seems to be affected by intensity of human activities. Preference for woodland habitats by both carnivores denotes that firewood extraction is the disturbance that least affects bobcat and coyote populations; therefore, this kind of human activity could be the least impacting type of disturbance for the coexistence between humans and these carnivore species.

Keywords

Abundance Habitat use Activity pattern Camera-traps 

Notes

Acknowledgments

We express our gratitude to D López, CA. Morales, HM. Castro, and I. Montes for their valuable aid in the field work; to F. Aguilar, JA. Fargallo, H. Rödel, and R. Beamonte for their comments during the statistical analysis; and to Kurt Leroy Hoffman for language editing.

Funding information

This research received financial support with grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT 321834), project CONACYT 101254, Posgrado Universidad Nacional Autónoma de México of. CPCB/127/12 2012, Posgrado de Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Volkswagen de México (“Volkswagen: Por amor al planeta” program, 2013–2015), and Programa Integral de Fortalecimiento Institucional (PIFI) 2013-29MSU00134-04.

References

  1. Anderson EM, Lovallo MJ (2003) Bobcat and Lynx. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management and conservation. 2nd edn. The Johns Hopkins University Press, Baltimore, pp 758–786Google Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2015a) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–8, http://CRAN.R-project.org/package=lme4
  3. Bates D, Maechler M, Bolker BM, Walker S (2015b) Fitting linear mixed-effects models using lme4. ArXiv e-print, Journal of Statistical Software, http://arxiv.org/abs/1406.5823
  4. Bekoff M, Gese EM (2003) Coyote. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management and conservation. 2nd edn. The Johns Hopkins University Press, Baltimore, pp 758–786Google Scholar
  5. Benson JF, Mahoney PJ, Patterson BR (2015) Spatiotemporal variation in selection of roads influences mortality risk for canids in an unprotected landscape. Oikos 124:1664–1673CrossRefGoogle Scholar
  6. Boisjoly D, Ouellet JP, Courtois R (2010) Coyote habitat selection and management implications for the Gaspésie Caribou. J of Wildl Manag 74(1):3–11CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35CrossRefGoogle Scholar
  8. Chamberlain MJ, Leopold BD (1999) Dietary patterns of sympatric bobcats and coyotes in Central Mississippi. Proc Annu Conf Southeast Assoc Fish and Wildl Agencies 53:204–219Google Scholar
  9. Chamberlain MJ, Leopold BD (2005) Overlap in space use among bobcats (Lynx rufus), coyotes (Canis latrans) and gray foxes (Urocyon cinereoargenteus). Am Midl Nat 153(1):171–179CrossRefGoogle Scholar
  10. Constible JM, Chamberlain MJ, Leopold BD (2006) Relationships between landscape pattern and space use of three mammalian carnivores in central Mississippi. Am Midl Nat 155(2):352–362CrossRefGoogle Scholar
  11. Corona MC (2005) Conservación del Parque Nacional Malinche. In: Fernández JA, López-Domínguez JC (eds) Biodiversidad del Parque Nacional Malinche, Tlaxcala, México. Coordinación General del Estado de Tlaxcala, Tlaxcala, pp 175–197Google Scholar
  12. Cove MV, Jones BM, Bossert AJ, Clever DR Jr, Dunwoody RK, White BC, Jackson V (2012) Use of camera traps to examine the mesopredator release hypothesis in a fragmented Midwestern landscape. Am Midl Nat 168(2):456–465CrossRefGoogle Scholar
  13. Cove MV, Spinola RM, Jackson VL, Saenz J (2014) Camera trapping ocelots: an evaluation of felid attractants. Hystrix 25(2):113–116Google Scholar
  14. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16(2):488–502CrossRefGoogle Scholar
  15. Cruz-Espinoza A, González PGE, Santos-Moreno A (2008) Dieta del coyote (Canis latrans) en Ixtepeji, Sierra Madre de Oaxaca, México. Naturaleza y Desarrollo 8(1):33–45Google Scholar
  16. Delibes M, Hernández L, Hiraldo F (1986) Datos preliminares sobre la ecología del coyote y el gato montés en el sur del desierto de Chihuahua. México Hist Nat 6(9):77–82Google Scholar
  17. Dickman AJ, Macdonald EA, Macdonald DW (2011) A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc Natl Acad Sci U S A 108(49):13937–13944CrossRefGoogle Scholar
  18. Farías V, Fuller TK, Sauvajot RM (2012) Activity and distribution of gray foxes (Urocyon cinereoargenteus) in Southern California. Southwest Nat 57(2):176–181CrossRefGoogle Scholar
  19. Fedor D (2006) Home on the range: conservation policy, traditional land use, and yak butter tea on the Tibetan Plateu. Unplublished report. Goldman Honors Program, Center for Environmental Science and Policy, Stanford University, 113ppGoogle Scholar
  20. George SL, Crooks KR (2006) Recreation and large mammal activity in an urban nature reserve. Biol Conserv 133:107–117CrossRefGoogle Scholar
  21. González J, Lara C, Vázquez J, Martínez-Gómez M (2007) Demography, density, and survival of an endemic and near threatened cottontail Sylvilagus cunicularius in central Mexico. Acta Theriol 52(3):299–305CrossRefGoogle Scholar
  22. Grubbs SE, Krausman PR (2009) Use of urban landscape by coyotes. Southwest Nat 54(1):1–12CrossRefGoogle Scholar
  23. Heilbrun RD, Silvy NJ, Tewes ME, Peterson MJ (2003) Using automatically triggered cameras to individual identify bobcats. Wildl Soc Bull 31(3):748–755Google Scholar
  24. Hinton JW, van Manen FT, Chamberlain MJ (2016) Space use and hábitat selection by resident and transient coyotes (Canis latrans) PlosOne  https://doi.org/10.1371/journal.pone.0132203
  25. Kelly MJ, Holub EL (2008) Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles Country, Virginia. Northeast Nat 15(2):249–262CrossRefGoogle Scholar
  26. Kirby JD, Rutledge JC, Jones IG, Conner LM, Warren RJ (2010) Effects of time of day and activity status on bobcat (Lynx rufus) cover-type selection in Southwestern. Southeast Nat 9(2):317–326CrossRefGoogle Scholar
  27. Kitchen AM, Gese EM, Schauster ER (2000) Resource partitioning between coyotes and swift foxes: space, time and diet. Canadian Journal of Zoology 77:1645–1656CrossRefGoogle Scholar
  28. Krebs CJ (1989) Ecological Methodology. HarperCollins Publishers. New YorkGoogle Scholar
  29. Larrucea ES, Brussard PF, Jaeger MM, Barret RH (2007) Cameras, coyotes, and the assumption of equal detectability. J Wildl Manag 71(5):1682–1689CrossRefGoogle Scholar
  30. Lenth BE, Knight RL, Brennan ME (2008) The effects of dogs on wildlife communities. Nat Areas J 28(3):218–227CrossRefGoogle Scholar
  31. Lesmeister DB, Nielsen CK, Schauber EM, Hellgren EC (2015) Spatial and temporal structure of a mesocarnivore guild in Midwestrn North America. Wildl Monogr 19:1–61CrossRefGoogle Scholar
  32. Litvaitis JA, Harrison DJ (1989) Bobcat-coyote niche relationship during a period of coyote population increase. Can J Zool 67:1180–1188CrossRefGoogle Scholar
  33. Litvaitis JA, Tash JP, Stevens CL (2006) The rise and fall of bobcat population in New Hampshire: relevance of historical harvest to understanding current patters of abundance and distribution. Biol Conserv 128:517–528CrossRefGoogle Scholar
  34. López-Domínguez JC, Acosta-Pérez R (2005) Descripción del Parque Nacional Malinche. In: Fernández JA, López-Domínguez JC (eds) Biodiversidad del Parque Nacional Malinche, Tlaxcala, México. Coordinación General del Estado de Tlaxcala, Tlaxcala, pp 3–23Google Scholar
  35. Marín-Sánchez AI, Briones-Salas M, López-Wilchis R, Servín J (2015) Ámbito hogareño del coyote (Canis latrans) en un bosque templado de la Sierra Madre de Oaxaca, México. Revista Mexicana de Biodivers 86:440–447CrossRefGoogle Scholar
  36. McClennen N, Wigglesworth RR, Anderson SH, Wachob DG (2001) The effect of suburban and agricultural development on the activity patterns of coyotes (Canis latrans). Am Mid Nat 146(1):27–36CrossRefGoogle Scholar
  37. McKinney T, Smith TW (2007) Diets of sympatric bobcats and coyotes during years of varying rainfall in central Arizona. West N Am Nat 67(1):8–15CrossRefGoogle Scholar
  38. Monroy-Vilchis O, Ortega AM, Velázquez A (2003) Dieta y abundancia relativa del coyote: un dispersor potencial de semillas. In: Velázquez A, Torres A, Bocco G (comp) Las Enseñanzas de San Juan. Investigación Participativa para el Manejo Integral de los Recursos Naturales. 1st EDN INE-SEMARNAT, México pp 565–591Google Scholar
  39. Monroy-Vilchis O, Zarco-González MM, Rodríguez-Soto C, Soria-Díaz L, Urios V (2011) Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Rev Biol Trop 50(1):373–383Google Scholar
  40. Neale JCC, Sacks BN (2001) Resource utilization and interspecific relations of sympatric bobcat and coyotes. Oikos 94:236–249CrossRefGoogle Scholar
  41. Neu CW, Byers CR, Peek JM (1974) A technique for analysis of utilization-availability data. J Wildl Manag 38:431–438CrossRefGoogle Scholar
  42. O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest land scape. Anim Conserv 6:131–139CrossRefGoogle Scholar
  43. Ordeñana MA, Crooks KR, Boydston EE, Fisher RN, Lyren LM, Siudyla S, Haas CD, Harris S, Hathaway SA, Turschak GM, Miles AK, Van Vuren DH (2010) Effects of urbanization on carnivore species distribution and richness. J Mamm 91(6):1322–1331CrossRefGoogle Scholar
  44. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 30 Nov 2017
  45. Randa LA, Cooper DM, Meserve PL, Yunger JA (2009) Prey switching of sympatric canids in response to variable prey abundance. J Mamm 90(3):594–603CrossRefGoogle Scholar
  46. Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in Southern California. Conserv Biol 17(2):566–576CrossRefGoogle Scholar
  47. Rodríguez-Martínez L, Vázquez J, Bautista A (2007) Primer registro del gato montés (Lynx rufus) en el Parque Nacional La Malinche, Tlaxcala, México. Revista Mexicana de Mastozoología 11:20–84Google Scholar
  48. Ruell EW, Riley SPD, Douglas MR, Pollinger JP, Cooks KR (2009) Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture-recapture sampling. J Mamm 90(1):129–135CrossRefGoogle Scholar
  49. Ruiz-Soberanes JA, Gómez-Álvarez G (2010) Estudio mastofaunístico del Parque Nacional Malinche, Tlaxcala, México. Therya 1(2):97–110CrossRefGoogle Scholar
  50. Sánchez DM, Krausman PR, Livingston TR, Gipson PS (2004) Persistence of carnivore scat in the Sonoran Desert. Wildl Soc Bull 32(2):366–372CrossRefGoogle Scholar
  51. Servín J, Chacón E (2005) Coyote. In: Ceballos G, Oliva GI (eds) Los mamíferos silvestres de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Fondo de Cultura Económica, México, pp 349–350Google Scholar
  52. Shivik JA, Jaeger MM, Barret RH (1997) Coyote activity patterns in The Sierra Nevada. Great Basin Naturalist 57(4):355–358Google Scholar
  53. Sumner PW, Hill EP, Wooding JB (1984) Activity and movements of coyotes in Mississippi and Alabama. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies 38:174–181Google Scholar
  54. Symmank ME, Comer CE, Kroll JC (2014) Using infrared-triggered cameras to monitor activity of forest carnivores. Southeast Nat 13(sp5):172–183CrossRefGoogle Scholar
  55. Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306CrossRefGoogle Scholar
  56. Whittington J, St. Claire CC, Mercer J (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15(2):543–553CrossRefGoogle Scholar
  57. Wooding JB, Hill EP, Sumner PW (1984) Coyote food habits in Mississippi and Alabama. Proc Annu Conf Southeast Assoc Fish and Wildl Agencies 38:182–188Google Scholar
  58. Yates CJ, Norton DA, Hobbs RJ (2000) Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecology 25:36–47CrossRefGoogle Scholar
  59. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  60. Zuo-Fu X, Huo S, Xiao W, Cui LW (2010) Positive influence of traditional culture and socioeconomics activity on conservation: a case of study from the black-and-white snub-nosed monkey (Rhinopithecus bieti) in Tibet. Zool Res 31(6):645–650Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  1. 1.Doctorado en NeuroetologíaUniversidad VeracruzanaXalapaMexico
  2. 2.Licenciatura en Ciencias AmbientalesUniversidad Autónoma de TlaxcalaTlaxcalaMexico
  3. 3.Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaTlaxcalaMexico
  4. 4.Centro de Investigación en Ciencias Biológicas AplicadasUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations