Mammal Research

, Volume 64, Issue 2, pp 155–164 | Cite as

Bait effectiveness in camera trap studies in the Iberian Peninsula

  • Noé Ferreira-RodríguezEmail author
  • Manuel A. Pombal
Original Paper


A wide variety of baits is used in camera trap studies, but few have been validated to obtain optimal and comparable results. The present study aimed to analyze the effectiveness of different baits commonly used in camera trap studies in the Iberian Peninsula. First, a bibliographic review was performed in order to identify the most common baits. Then, an intensive camera trap monitoring program was carried out with the identified baits. Finally, we estimate the effect of bait type on the average detection of several target and nontarget mammal species. Results show that chicken- and fish-baited cameras produced satisfactory results for targeted species. Chicken meat showed higher detection for badgers, stone martens, and common genets. Canned sardines in vegetable oil resulted an attractive bait for red foxes and feral dogs. Unbaited cameras, vegetable-based baits, or scats and urine as operational attractants resulted ineffective baits for mesocarnivores, with the exception of feral cats. A variety of baits has been used for mesocarnivore inventories or single-species studies in the Iberian Peninsula. In consequence, most of these inventories and studies cannot be fully compared. Moreover, as baits are not equally effective, diversity and abundance data could be underestimated and compromise the quality of the survey data. The present results highlight the need for standardized methods in camera trap studies to follow a replicable methodology in order to obtain feasible and comparable results among studies.


Keystone species Mesocarnivores Monitoring Methods Remote sampling Scent lures 



We want to express our gratitude to our colleagues from ANABAM, in particular to Carlos Angílica, Ricardo da Silva, Luís Dorado, Agustín Ferreira, Antón Ferreira, Mª Consuelo González, and Ricardo Portela.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. AEMET-IM (2011) Iberian climate atlas. Closas-Orcoyen, MadridGoogle Scholar
  2. Armenteros JA, Sánchez-García C, Alonso ME, Larsen RT, Gaudioso VR (2015) Use of water troughs by wild rabbits (Oryctolagus cuniculus) in a farmland area of north–west Spain. Anim Biodiv Conserv 38:233–240Google Scholar
  3. Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412. CrossRefGoogle Scholar
  4. Barea-Azcón JM, Virgós E, Ballesteros-Duperón E, Moleón M, Chirosa M (2007) Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodivers Conserv 16:1213–1230. CrossRefGoogle Scholar
  5. Barrull J, Mate I, Ruiz-Olmo J, Casanovas JG, Gosàlbez J, Salicrú M (2014) Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mamm Biol 79:123–131. CrossRefGoogle Scholar
  6. Belda A, Belenguer R, Zaragozí B (2015) Situació de l’arruí—«Ammotragus lervia» (Pallas, 1777) — a la serra de Mariola (SE espanyol): Distribució i aspectes ecològics. Orsis 29:161–171. CrossRefGoogle Scholar
  7. Birks J, Messenger J, Braithwaite T, Davison A, Brookes R, Strachan C (2004) Are scat surveys a reliable method for assessing distribution and population status of pine martens? In: Proulx G (ed) Harrison DJ, Fuller AK. Marten and fishers in human-altered environments. SpringerVerlag, New York, pp 235–252Google Scholar
  8. Cáceres I, Esteban-Nadal M, Bennàsar M, Monfort MDM, Pesquero MD, Fernández-Jalvo Y (2013) Osteophagia and dental wear in herbivores: actualistic data and archaeological evidence. J Archaeol Sci 40:3105–3116. CrossRefGoogle Scholar
  9. Cancio I, González-Robles A, Bastida JM, Manzaneda AJ, Salido T, Rey PJ (2016) Habitat loss exacerbates regional extinction risk of the keystone semiarid shrub Ziziphus lotus through collapsing the seed dispersal service by foxes (Vulpes vulpes). Biodivers Conserv 25:693–709. CrossRefGoogle Scholar
  10. Carrasco-Garcia R, Barasona JA, Gortazar C, Montoro V, Sanchez-Vizcaino JM, Vicente J (2016) Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. Eur J Wildlife Res 62:65–78. CrossRefGoogle Scholar
  11. Chupp AD (2005) Habitat selection in four sympatric small mammal species and the effects of potential predators on Peromyscus leucopus. Virginia Commonwealth University Richmond, RichmondGoogle Scholar
  12. Cowie CE, Marreos N, Gortázar C, Jaroso R, White PC, Balseiro A (2014) Shared risk factors for multiple livestock diseases: a case study of bovine tuberculosis and brucellosis. Res Vet Sci 97:491–497. CrossRefGoogle Scholar
  13. Cruz J, Sarmento P, White PCL (2015) Influence of exotic forest plantations on occupancy and co-occurrence patterns in a Mediterranean carnivore guild. J Mammal 96:854–865. CrossRefGoogle Scholar
  14. Curveira-Santos G, Marques TA, Björklunda M, Santos-Reis M (2017) Mediterranean mesocarnivores in spatially structured managed landscapes: community organisation in time and space. Agric Ecosyst Environ 237:280–289. CrossRefGoogle Scholar
  15. Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc Bull 27:571–581. Google Scholar
  16. Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P (2016) Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure? J Zool 298:128–138. CrossRefGoogle Scholar
  17. Dobson A, Lodge D, Alder J, Cumming GS, Keymer J, McGlade J, Mooney H, Rusak JA, Sala O, Wolters V, Wall D (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–1924.[1915:HLTCAT]2.0.CO;2Google Scholar
  18. Dundas SJ, Adams PJ, Fleming PA (2014) First in, first served: uptake of 1080 poison fox baits in south-west Western Australia. Wildlife Res 41:117–126. CrossRefGoogle Scholar
  19. EEA (2010) Corine land cover 2006 raster data. European Environment Agency. Accessed 3 Dec 2018
  20. Eyre TJ, Ferguson DJ, Hourigan CL, Smith GC, Mathieson MT, Kelly AL, Venz MF, Hogan LD, Rowland J (2014) Terrestrial vertebrate fauna survey assessment guidelines for Queensland. Queensland Government, BrisbaneGoogle Scholar
  21. Fernández-Aguilar X, Molina-Vacas G, Ramiro V, Carro FA, Barasosa JA, Vicente J, Gutiérrez C (2012) Presence of raccoon (Procyon lotor) in Doñana National Park and its surroundings. Galemys 24:76–79. CrossRefGoogle Scholar
  22. Ferreira N, Pombal MA (2012) Ecological values of the Miño estuary and good practices related to ornithology. Sci Ann Danube Delta Inst 18:33–42. Google Scholar
  23. Ferreras P, Díaz-Ruiz F, Alves PC, Monterroso P (2017) Optimizing camera-trapping protocols for characterizing mesocarnivore communities in south-western Europe. J Zool 301:23–31. CrossRefGoogle Scholar
  24. García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y, Prieto B, Pliego B, Pérez M, Herrera J, García-Román L (2012) Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions 14:1305–1310. CrossRefGoogle Scholar
  25. Garrote G, de Ayala RP, Pereira P, Robles F, Guzman N, García FJ, Iglesias MC, Hervás J, Fajardo I, Simón M, Barroso JL (2011) Estimation of the Iberian lynx (Lynx pardinus) population in the Doñana area, SW Spain, using capture–recapture analysis of camera-trapping data. Eur J Wildlife Res 57:355–362. CrossRefGoogle Scholar
  26. Gil-Sánchez JM, Simón MA, Cadenas R, Bueno J, Moral M, Rodríguez-Siles J (2010) Current status of the Iberian lynx (Lynx pardinus) in eastern Sierra Morena, southern Spain. Wildl Biol Pract 3:14–33Google Scholar
  27. Gil-Sánchez JM, Moral M, Bueno J, Rodríguez-Siles J, Lillo S, Pérez J, Martín JM, Valenzuela G, Garrote G, Torralba B, Simón-Mata MA (2011) The use of camera trapping for estimating Iberian lynx (Lynx pardinus) home ranges. Eur J Wildlife Res 57:1203–1211. CrossRefGoogle Scholar
  28. Gil-Sánchez JM, Jaramillo J, Barea-Azcón JM (2015) Strong spatial segregation between wildcats and domestic cats may explain low hybridization rates on the Iberian Peninsula. Zoology 118:377–385. CrossRefGoogle Scholar
  29. González-Esteban J, Villate I, Irizar I (2004) Assessing camera traps for surveying the European mink, Mustela lutreola (Linnaeus, 1761), distribution. Eur J Wildlife Res 50:33–36. CrossRefGoogle Scholar
  30. González-Varo JP, López-Bao JV, Guitián J (2013) Functional diversity among seed dispersal kernels generated by carnivorous mammals. J Anim Ecol 82:562–571. CrossRefGoogle Scholar
  31. Hamel S, Killengreen ST, Henden JA, Eide NE, Roed-Eriksen L, Ims RA, Yoccoz NG (2013) Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol Evol 4:105–113. CrossRefGoogle Scholar
  32. Hegglin D, Bontadina F, Gloor S, Romer J, Müller U, Breitenmoser U, Deplazes P (2004) Baiting red foxes in an urban area: a camera trap study. J Wildl Manag 68:1010–1017.[1010:BRFIAU]2.0.CO;2Google Scholar
  33. Herrera JM, Teixeira IS, Rodríguez-Pérez J, Mira A (2016) Landscape structure shapes carnivore-mediated seed dispersal kernels. Landsc Ecol 31:731–743. CrossRefGoogle Scholar
  34. INE (Instituto Nacional de Estadística) (2016) Accessed 16 August 2016
  35. Jiménez J, Carrasco M, Feliu J (2014) Estima de la población de nutria en las Tablas de Daimiel mediante captura-recaptura espacial y muestreo de distancias. Galemys 26:1–14. CrossRefGoogle Scholar
  36. Jiménez J, Nuñez-Arjona JC, Rueda C, González LM, García-Domínguez F, Muñoz-Igualada J, López-Bao JV (2017) Estimating carnivore community structures. Sci Rep 7:41036. CrossRefGoogle Scholar
  37. Kukielka E, Barasona JA, Cowie CE, Drewe JA, Gortazar C, Cotarelo I, Vicente J (2013) Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev Vet Med 112:213–221. CrossRefGoogle Scholar
  38. López-Parra M, Fernández L, Ruiz G, Gil-Sánchez JM, Simón MA, López G, Sarmento P (2012) Change in demographic patterns of the Doñana Iberian lynx Lynx pardinus: management implications and conservation perspectives. Oryx 46:403–413. CrossRefGoogle Scholar
  39. Meek PD, Ballard GA, Falzon G (2016) The higher you go the less you will know: placing camera traps high to avoid theft will affect detection. Remote Sens Ecol Conserv 2:204–211. CrossRefGoogle Scholar
  40. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. BioScience 43:219–224. CrossRefGoogle Scholar
  41. Molina-Vacas G, Bonet-Arbolí V, Rafart-Plaza E, Rodríguez-Teijeiro JD (2009) Spatial ecology of European badgers (Meles meles L.) in Mediterranean habitats of the north-eastern Iberian Peninsula. I: home range size, spatial distribution and social organization. Vie et Milieu – Life Environ 59:227–236Google Scholar
  42. Monterroso P, Brito JC, Ferreras P, Alves PC (2009) Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. J Zool 279:27–35. CrossRefGoogle Scholar
  43. Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive studies of Iberian carnivore communities. Wildlife Res 38:446–454. CrossRefGoogle Scholar
  44. Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119:1044–1056. CrossRefGoogle Scholar
  45. Monterroso P, Alves PC, Ferreras P (2014a) Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68:1403–1417. CrossRefGoogle Scholar
  46. Monterroso P, Rich LN, Serronha A, Ferreras P, Alves PC (2014b) Efficiency of hair snares and camera traps to survey mesocarnivore populations. Eur J Wildlife Res 60:279–289. CrossRefGoogle Scholar
  47. Monterroso P, Rebelo P, Alves PC, Ferreras P (2016a) Niche partitioning at the edge of the range: a multidimensional analysis with sympatric martens. J Mammal 97:928–939. CrossRefGoogle Scholar
  48. Monterroso P, Garrote G, Serronha A, Santos E, Delibes-Mateos M, Abrantes J, Perez de Ayala R, Silvestre F, Carvalho J, Vasco I, Lopes AM, Maio E, Magalhães MJ, Mills LS, Esteves PJ, Simón MÁ, Alves PC (2016b) Disease-mediated bottom-up regulation: an emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci Rep 6:36072. CrossRefGoogle Scholar
  49. Moseby KE, Selfe R, Freeman A (2004) Attraction of auditory and olfactory lures to feral cats, red foxes, European rabbits and burrowing bettongs. Ecol Manage Restor 5:228–231. CrossRefGoogle Scholar
  50. Oleaga Á, Casais R, Balseiro A, Espí A, Llaneza L, Hartasánchez A, Gortázar C (2011) New techniques for an old disease: sarcoptic mange in the Iberian wolf. Vet Parasitol 181:255–266. CrossRefGoogle Scholar
  51. Pereira P, da Silva AA, Alves J, Matos M, Fonseca C (2012) Coexistence of carnivores in a heterogeneous landscape: habitat selection and ecological niches. Ecol Res 27:745–753. CrossRefGoogle Scholar
  52. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484.
  53. Recio MR, Arija CM, Cabezas-Díaz S, Virgós E (2015) Changes in Mediterranean mesocarnivore communities along urban and ex-urban gradients. Curr Zool 61:793–801. CrossRefGoogle Scholar
  54. Rodríguez-Refojos C, Zuberogoitia I (2011) Middle-sized carnivores in mosaic landscapes: the case of Biscay (SW Europe). In: Rosalino LM, Costa CG (eds) Middle-sized carnivores in agricultural landscapes. Nova Science Publishers, New York, pp 105–126Google Scholar
  55. Roemer GW, Gompper ME, Van Valkengurgh B (2009) The ecological role of the mammalian mesocarnivore. BioScience 59:165–173. CrossRefGoogle Scholar
  56. Rosellini S, Osorio E, Ruiz-González A, Piñeiro A, Barja I (2008) Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): a multievidence approach using faecal DNA analysis and camera-traps. Wildlife Res 35:434–440. CrossRefGoogle Scholar
  57. Rovero F, Zimmermann F, Berzi D, Meek P (2013) Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. HYSTRIX 24:148–156. Google Scholar
  58. Rowcliffe JM, Carbone C, Jansen PA, Kays R, Kranstauber B (2011) Quantifying the sensitivity of camera traps: an adapted distance sampling approach. Methods Ecol Evol 2:464–476. CrossRefGoogle Scholar
  59. Sadlier LM, Webbon CC, Baker PJ, Harris S (2004) Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles: are field signs the answer? Mammal Rev 34:75–98. CrossRefGoogle Scholar
  60. Salgado I (2015) Mapache – Procyon lotor. In: Salvador, A., Barja, I. (eds.) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. Accessed 17 Feb 2018
  61. Sarmento P, Cruz J, Eira C, Fonseca C (2009a) Evaluation of camera trapping for estimating red fox abundance. J Wildl Manag 73:1207–1212. CrossRefGoogle Scholar
  62. Sarmento P, Cruz J, Eira C, Fonseca C (2009b) Spatial colonization by feral domestic cats Felis catus of former wildcat Felis silvestris silvestris home ranges. Acta Theriol 54:31–38. CrossRefGoogle Scholar
  63. Sarmento PB, Cruz J, Eira C, Fonseca C (2011) Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. Eur J Wildlife Res 57:119–131. CrossRefGoogle Scholar
  64. Soto CA, Palomares F (2014) Surprising low abundance of European wildcats in a Mediterranean protected area of southwestern Spain. Mammalia 78:57–65. CrossRefGoogle Scholar
  65. Srbek-Araujo AC, Chiarello AG (2013) Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota Neotrop 13:51–62. CrossRefGoogle Scholar
  66. Sunyer P, Muñoz A, Bonal R, Espelta JM (2013) The ecology of seed dispersal by small rodents: a role for predator and conspecific scents. Funct Ecol 27:1313–1321. CrossRefGoogle Scholar
  67. Suraci JP, Clinchy M, Dill LM, Roberts D, Zanette LY (2016) Fear of large carnivores causes a trophic cascade. Nat Commun 7:10698. CrossRefGoogle Scholar
  68. Watson DL, Anderson MJ, Kendrick GA, Nardi K, Harvey ES (2009) Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia. Mar Ecol Prog Ser 384:241–249. CrossRefGoogle Scholar
  69. Wilson G, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildlife Res 28:151–164. CrossRefGoogle Scholar
  70. Zabala J, Zuberogoitia I, González-Oreja JA (2010) Estimating costs and outcomes of invasive American mink (Neovison vison) management in continental areas: a framework for evidence based control and eradication. Biol Invasions 12:2999–3012. CrossRefGoogle Scholar
  71. Zuberogoitia I, González-Oreja JA, Zabala J, Rodríguez-Refojos C (2010) Assessing the control/eradication of an invasive species, the American mink, based on field data; how much would it cost? Biodivers Conserv 19:1455–1469. CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2019

Authors and Affiliations

  1. 1.Asociación Naturalista “Baixo Miño”A GuardaSpain
  2. 2.Department of Ecology and Animal Biology, Faculty of BiologyUniversity of VigoVigoSpain
  3. 3.Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations