Separation and Identification of Glycan Anomers Using Ultrahigh-Resolution Ion-Mobility Spectrometry and Cryogenic Ion Spectroscopy

  • Stephan Warnke
  • Ahmed Ben Faleh
  • Valeriu Scutelnic
  • Thomas R. RizzoEmail author
Research Article


The analysis of carbohydrates, or glycans, is challenging for established structure-sensitive gas-phase methods. The multitude of possible stereo-, regio-, and structural isomers makes them substantially more complex to analyze than DNA or proteins, and no one method is currently able to fully resolve them. While the combination of tandem mass spectrometry (MS) and ion-mobility spectrometry (IMS) have made important inroads in glycan analysis, in many cases, this approach is still not able to identify the precise isomeric form. To advance the techniques available for glycan analysis, we employ two important innovations. First, we perform ultrahigh-resolution mobility separation using structures for lossless ion manipulations (SLIM) for isomer separation and pre-selection. We then complement this IMS-MS stage with a cryogenic IR spectroscopic dimension since a glycan’s vibrational spectrum provides a fingerprint that is extremely sensitive to the precise isomeric form. Using this unique approach in conjunction with oxygen-18 isotopic labeling, we show on a range of disaccharides how the two α and β anomers that every reducing glycan adopts in solution can be readily separated by mobility and identified based on their IR spectra. In addition to highlighting the power of our technique to detect minute differences in the structure of isomeric carbohydrates, these results provide the means to determine if and when anomericity is retained during collision-induced dissociation (CID) of larger glycans.


Glycans Carbohydrates Anomers Glucose Ion-mobility spectrometry Ion spectroscopy Mass spectrometry SLIM 



The authors thank the Swiss National Science Foundation (200020_165908), the European Research Council (788697-GLYCANAL), and the EPFL for their generous support of this work. We would also like to acknowledge R.D. Smith and his group for helpful discussions on the implementation of the SLIM technology.

Supplementary material

13361_2019_2333_MOESM1_ESM.docx (837 kb)
ESM 1 (DOCX 836 kb)


  1. 1.
    Varki, A.: Biological roles of glycans. Glycobiology. 27, 3–49 (2017)CrossRefGoogle Scholar
  2. 2.
    Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L. and Seeberger, P.H.: Essentials of Glycobiology Cold Spring Harbor Laboratory Press (2017), 3rd ednGoogle Scholar
  3. 3.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3, 97–130 (1993)CrossRefGoogle Scholar
  4. 4.
    Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)CrossRefGoogle Scholar
  5. 5.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature. 422, 198–207 (2003)CrossRefGoogle Scholar
  6. 6.
    Shi, Y., Xiang, R., Horváth, C., Wilkins, J.A.: The role of liquid chromatography in proteomics. J. Chromatogr. A. 1053, 27–36 (2004)CrossRefGoogle Scholar
  7. 7.
    Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23, 161–227 (2004)CrossRefGoogle Scholar
  8. 8.
    Veillon, L., Huang, Y., Peng, W., Dong, X., Cho, B.G., Mechref, Y.: Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis. 38, 2100–2114 (2017)CrossRefGoogle Scholar
  9. 9.
    Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)CrossRefGoogle Scholar
  10. 10.
    Pigman, W., Isbell, H.S.: Mutarotation of sugars in solution*: part I: history, basic kinetics, and composition of sugar solutions. Adv. Carbohydr. Chem. 23, 11–57 (1968)Google Scholar
  11. 11.
    Bowers, M.T.: Ion mobility spectrometry: a personal view of its development at UCSB. Int. J. Mass Spectrom. 370, 75–95 (2014)CrossRefGoogle Scholar
  12. 12.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Clemmer, D.E.: Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal. Chem. 69, 2504–2509 (1997)CrossRefGoogle Scholar
  14. 14.
    Lee, S., Wyttenbach, T., Bowers, M.T.: Gas phase structures of sodiated oligosaccharides by ion mobility/ion chromatography methods. Int. J. Mass Spectrom. Ion Process. 167-168, 605–614 (1997)CrossRefGoogle Scholar
  15. 15.
    Hofmann, J., Pagel, K.: Glycan analysis by ion mobility-mass spectrometry. Angew. Chem. Int. Ed. 56, 8342–8349 (2017)CrossRefGoogle Scholar
  16. 16.
    Hofmann, J., Stuckmann, A., Crispin, M., Harvey, D.J., Pagel, K., Struwe, W.B.: Identification of Lewis and blood group carbohydrate epitopes by ion mobility-tandem-mass spectrometry fingerprinting. Anal. Chem. 89, 2318–2325 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill Jr., H.H.: Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 85, 2760–2769 (2013)CrossRefGoogle Scholar
  18. 18.
    Manz, C., Pagel, K.: Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Curr. Opin. Chem. Biol. 42, 16–24 (2018)CrossRefGoogle Scholar
  19. 19.
    Boyarkin, O.V.: Cold ion spectroscopy for structural identifications of biomolecules. Int. Rev. Phys. Chem. 37, 559–606 (2018)CrossRefGoogle Scholar
  20. 20.
    Voss, J.M., Kregel, S.J., Fischer, K.C., Garand, E.: IR-IR conformation specific spectroscopy of Na(+)(glucose) adducts. J. Am. Soc. Mass Spectrom. 29, 42–50 (2018)CrossRefGoogle Scholar
  21. 21.
    Scutelnic, V., Rizzo, T.R.: Cryogenic ion spectroscopy for identification of monosaccharide Anomers. J. Phys. Chem. A. 123, 2815–2819 (2019)CrossRefGoogle Scholar
  22. 22.
    Barnes, L., Schindler, B., Chambert, S., Allouche, A.-R., Compagnon, I.: Conformational preferences of protonated N-acetylated hexosamines probed by InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy and ab initio calculations. Int. J. Mass Spectrom. 421, 116–123 (2017)CrossRefGoogle Scholar
  23. 23.
    Contreras, C.S., Polfer, N.C., Oomens, J., Steill, J.D., Bendiak, B., Eyler, J.R.: On the path to glycan conformer identification: gas-phase study of the anomers of methyl glycosides of N-acetyl-d-glucosamine and N-acetyl-d-galactosamine. Int. J. Mass Spectrom. 330-332, 285–294 (2012)CrossRefGoogle Scholar
  24. 24.
    Tan, Y., Zhao, N., Liu, J., Li, P., Stedwell, C.N., Yu, L., Polfer, N.C.: Vibrational signatures of isomeric lithiated N-acetyl-D-hexosamines by gas-phase infrared multiple-photon dissociation (IRMPD) spectroscopy. J. Am. Soc. Mass Spectrom. 28, 539–550 (2017)CrossRefGoogle Scholar
  25. 25.
    Mucha, E., Gonzalez Florez, A.I., Marianski, M., Thomas, D.A., Hoffmann, W., Struwe, W.B., Hahm, H.S., Gewinner, S., Schollkopf, W., Seeberger, P.H., von Helden, G., Pagel, K.: Glycan fingerprinting via cold-ion infrared spectroscopy. Angew. Chem. Int. Ed. 56, 11248–11251 (2017)CrossRefGoogle Scholar
  26. 26.
    Khanal, N., Masellis, C., Kamrath, M.Z., Clemmer, D.E., Rizzo, T.R.: Cryogenic IR spectroscopy combined with ion mobility spectrometry for the analysis of human milk oligosaccharides. Analyst. 143, 1846–1852 (2018)CrossRefGoogle Scholar
  27. 27.
    Masellis, C., Khanal, N., Kamrath, M.Z., Clemmer, D.E., Rizzo, T.R.: Cryogenic vibrational spectroscopy provides unique fingerprints for glycan identification. J. Am. Soc. Mass Spectrom. 28, 2217–2222 (2017)CrossRefGoogle Scholar
  28. 28.
    Schindler, B., Barnes, L., Renois, G., Gray, C., Chambert, S., Fort, S., Flitsch, S., Loison, C., Allouche, A.R., Compagnon, I.: Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat. Commun. 8, 973 (2017)CrossRefGoogle Scholar
  29. 29.
    Saparbaev, E., Kopysov, V., Yamaletdinov, R., Pereverzev, A. and Boyarkin, O.V.: Interplay of H-bonds with Aromatics in Isolated Complexes Identifies Isomeric Carbohydrates. Angewandte Chemie International Edition. doi: (2019)
  30. 30.
    Hernandez, O., Isenberg, S., Steinmetz, V., Glish, G.L., Maitre, P.: Probing mobility-selected saccharide isomers: selective ion-molecule reactions and wavelength-specific IR activation. J. Phys. Chem. A. 119, 6057–6064 (2015)CrossRefGoogle Scholar
  31. 31.
    Wolk, A.B., Leavitt, C.M., Garand, E., Johnson, M.A.: Cryogenic ion chemistry and spectroscopy. Acc. Chem. Res. 47, 202–210 (2014)CrossRefGoogle Scholar
  32. 32.
    Leavitt, C.M., Wolk, A.B., Fournier, J.A., Kamrath, M.Z., Garand, E., Van Stipdonk, M.J., Johnson, M.A.: Isomer-specific IR-IR double resonance spectroscopy of D2-tagged protonated dipeptides prepared in a cryogenic ion trap. J. Phys. Chem. Lett. 3, 1099–1105 (2012)CrossRefGoogle Scholar
  33. 33.
    Masson, A., Kamrath, M.Z., Perez, M.A., Glover, M.S., Rothlisberger, U., Clemmer, D.E., Rizzo, T.R.: Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J. Am. Soc. Mass Spectrom. 26, 1444–1454 (2015)CrossRefGoogle Scholar
  34. 34.
    Goebbert, D.J., Wende, T., Bergmann, R., Meijer, G., Asmis, K.R.: Messenger-tagging electrosprayed ions: vibrational spectroscopy of suberate dianions. J. Phys. Chem. A. 113, 5874–5880 (2009)CrossRefGoogle Scholar
  35. 35.
    Schindler, B., Laloy-Borgna, G., Barnes, L., Allouche, A.R., Bouju, E., Dugas, V., Demesmay, C., Compagnon, I.: Online separation and identification of isomers using infrared multiple photon dissociation ion spectroscopy coupled to liquid chromatography: application to the analysis of disaccharides regio-isomers and monosaccharide anomers. Anal. Chem. 90, 11741–11745 (2018)CrossRefGoogle Scholar
  36. 36.
    Warnke, S., Seo, J., Boschmans, J., Sobott, F., Scrivens, J.H., Bleiholder, C., Bowers, M.T., Gewinner, S., Schollkopf, W., Pagel, K., von Helden, G.: Protomers of benzocaine: solvent and permittivity dependence. J. Am. Chem. Soc. 137, 4236–4242 (2015)CrossRefGoogle Scholar
  37. 37.
    Kamrath, M.Z., Rizzo, T.R.: Combining ion mobility and cryogenic spectroscopy for structural and analytical studies of biomolecular ions. Acc. Chem. Res. 51, 1487–1495 (2018)CrossRefGoogle Scholar
  38. 38.
    Ben Faleh, A., Warnke, S., Rizzo, T.R.: Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures. Anal. Chem. 91, 4876–4882 (2019)CrossRefGoogle Scholar
  39. 39.
    Struwe, W.B., Baldauf, C., Hofmann, J., Rudd, P.M., Pagel, K.: Ion mobility separation of deprotonated oligosaccharide isomers - evidence for gas-phase charge migration. Chem. Commun. 52, 12353–12356 (2016)CrossRefGoogle Scholar
  40. 40.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)CrossRefGoogle Scholar
  41. 41.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefGoogle Scholar
  42. 42.
    Morrison, K.A., Bendiak, B.K., Clowers, B.H.: Enhanced mixture separations of metal adducted tetrasaccharides using frequency encoded ion mobility separations and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 664–677 (2017)CrossRefGoogle Scholar
  43. 43.
    Hamid, A.M., Ibrahim, Y.M., Garimella, S.V., Webb, I.K., Deng, L., Chen, T.C., Anderson, G.A., Prost, S.A., Norheim, R.V., Tolmachev, A.V., Smith, R.D.: Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Anal. Chem. 87, 11301–11308 (2015)CrossRefGoogle Scholar
  44. 44.
    Deng, L., Ibrahim, Y.M., Hamid, A.M., Garimella, S.V., Webb, I.K., Zheng, X., Prost, S.A., Sandoval, J.A., Norheim, R.V., Anderson, G.A., Tolmachev, A.V., Baker, E.S., Smith, R.D.: Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal. Chem. 88, 8957–8964 (2016)CrossRefGoogle Scholar
  45. 45.
    Warnke, S., Ben Faleh, A., Pellegrinelli, R.P., Yalovenko, N., Rizzo, T.R.: Combining ultra-high resolution ion mobility spectrometry with cryogenic IR spectroscopy for the study of biomolecular ions. Faraday Discuss. (2019).
  46. 46.
    Deng, L., Webb, I.K., Garimella, S.V.B., Hamid, A.M., Zheng, X., Norheim, R.V., Prost, S.A., Anderson, G.A., Sandoval, J.A., Baker, E.S., Ibrahim, Y.M., Smith, R.D.: Serpentine Ultralong Path with Extended Routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations. Anal. Chem. 89, 4628–4634 (2017)CrossRefGoogle Scholar
  47. 47.
    Ryu, K.S., Kim, C., Park, C., Choi, B.S.: NMR analysis of enzyme-catalyzed and free-equilibrium mutarotation kinetics of monosaccharides. J. Am. Chem. Soc. 126, 9180–9181 (2004)CrossRefGoogle Scholar
  48. 48.
    Risley, J.M., Van Etten, R.L.: Kinetics of oxygen exchange at the anomeric carbon atom of D-glucose and D-erythrose using the oxygen-18 isotope effect in carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry. 21, 6360–6365 (2002)CrossRefGoogle Scholar
  49. 49.
    Chen, T.C., Fillmore, T.L., Prost, S.A., Moore, R.J., Ibrahim, Y.M., Smith, R.D.: Orthogonal injection ion funnel interface providing enhanced performance for selected reaction monitoring-triple quadrupole mass spectrometry. Anal. Chem. 87, 7326–7331 (2015)CrossRefGoogle Scholar
  50. 50.
    Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)CrossRefGoogle Scholar
  51. 51.
    Nagy, G., Attah, I.K., Garimella, S.V.B., Tang, K., Ibrahim, Y.M., Baker, E.S., Smith, R.D.: Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations. Chem. Commun. 54, 11701–11704 (2018)CrossRefGoogle Scholar
  52. 52.
    Ujma, J., Ropartz, D., Giles, K., Richardson, K., Langridge, D., Wildgoose, J., Green, M., Pringle, S.: Cyclic ion mobility mass spectrometry distinguishes anomers and open-ring forms of pentasaccharides. J. Am. Soc. Mass Spectrom. (2019)Google Scholar
  53. 53.
    Lin, C.E., Yu, C.J., Chen, C.L., Chou, L.D., Chou, C.: Kinetics of glucose mutarotation assessed by an equal-amplitude paired polarized heterodyne polarimeter. J. Phys. Chem. A. 114, 1665–1669 (2010)CrossRefGoogle Scholar
  54. 54.
    Ballash, N.M., Robertson, E.B.: The mutarotation of glucose in dimethylsulfoxide and water mixtures. Can. J. Chem. 51, 556–564 (1972)CrossRefGoogle Scholar
  55. 55.
    Kendrew, J.C., Moelwyn-Hughes, E.A.: The kinetics of mutarotation in solution. Proc. R. Soc. London, Ser. A 176, 352–367 (1940)CrossRefGoogle Scholar
  56. 56.
    Shen, Y.H., Tsai, S.T., Liew, C.Y., Ni, C.K.: Mass spectrometry-based identification of carbohydrate anomeric configuration to determine the mechanism of glycoside hydrolases. Carbohydr. Res. 476, 53–59 (2019)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPMÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations