Advertisement

Internal Energy Deposition in Infrared Matrix-Assisted Laser Desorption Electrospray Ionization With and Without the Use of Ice as a Matrix

  • Anqi Tu
  • David C. MuddimanEmail author
Research Article

Abstract

The internal energy deposited into analytes during the ionization process largely influences the extent of fragmentation, thus the appearance of the resulting mass spectrum. The internal energy distributions of a series of para-substituted benzyl pyridinium cations in liquid and solid-state generated by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) were measured using the survival yield method, of which results were subsequently compared with conventional electrospray ionization (ESI). The comparable mean internal energy values (e.g., 1.8–1.9 eV at a collision energy of 15 eV) and peak widths obtained with IR-MALDESI and ESI support that IR-MALDESI are essentially a soft ionization technique where analytes do not gain considerable internal energy during the laser-induced desorption process and/or lose energy during uptake into charged electrospray droplets. An unusual fragment ion, protonated pyridine, was only found for solid IR-MALDESI at relatively high collision energies, which is presumably resulted from direct ionization of the pre-charged analytes in form of salts. Analysis of tissue with an ice layer consistently yielded ion populations with higher internal energy than its counterpart without an ice layer, likely due to a substantially enhanced number of IR absorbers with ice. Further measurements with holo-myoglobin show that IR-MALDESI-MS retains the noncovalently bound heme-protein complexes under both native-like and denaturing conditions, while complete loss of the heme group occurred in denaturing ESI-MS, showing that the softness of IR-MALDESI is equivalent or superior to ESI for biomolecules.

Keywords

Internal energy deposition IR-MALDESI Mass spectrometry imaging Survival yield method Thermometer ions Ambient ionization 

Notes

Acknowledgements

All mass spectrometry measurements were carried out in the Molecular Education, Technology, and Research Innovation Center (METRIC) at North Carolina State University. The authors gratefully acknowledge the financial support received from the National Institutes of Health (R01GM087964) and North Carolina State University.

Compliance with Ethical Standards

The animal was managed in accordance with the Institute for Laboratory Animal Research Guide, and all husbandry practices were approved by North Carolina State University Institutional Animal Care and Use Committee (IACUC).

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

13361_2019_2323_MOESM1_ESM.pdf (630 kb)
ESM 1 (PDF 630 kb)

References

  1. 1.
    Loziuk, P., Meier, F., Johnson, C., Ghashghaei, H.T., Muddiman, D.C.: TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics. Anal. Bioanal. Chem. 408, 3453–3474 (2016)CrossRefGoogle Scholar
  2. 2.
    Meier, F., Garrard, K.P., Muddiman, D.C.: Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Rapid Commun. Mass Spectrom. 28, 2461–2470 (2014)CrossRefGoogle Scholar
  3. 3.
    Nazari, M., Muddiman, D.C.: Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 141, 595–605 (2016)CrossRefGoogle Scholar
  4. 4.
    Nazari, M., Bokhart, M.T., Loziuk, P.L., Muddiman, D.: Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix- assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 143, 654–661 (2018)CrossRefGoogle Scholar
  5. 5.
    Sampson, J.S., Hawkridge, A.M., Muddiman, D.C.: Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006)CrossRefGoogle Scholar
  6. 6.
    Barry, J.A., Robichaud, G., Bokhart, M.T., Thompson, C., Sykes, C., Kashuba, A.D.M., Muddiman, D.C.: Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. J. Am. Soc. Mass Spectrom. 25, 2038–2047 (2014)CrossRefGoogle Scholar
  7. 7.
    Bokhart, M.T., Rosen, E., Thompson, C., Sykes, C., Kashuba, A.D.M., Muddiman, D.C.: Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Anal. Bioanal. Chem. 407, 2073–2084 (2015)CrossRefGoogle Scholar
  8. 8.
    Dixon, R.B., Muddiman, D.C.: Study of the ionization mechanism in hybrid laser based desorption techniques. Analyst. 135, 880–882 (2010)CrossRefGoogle Scholar
  9. 9.
    Sampson, J.S., Hawkridge, A.M., Muddiman, D.C.: Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal. Chem. 80, 6773–6778 (2008)CrossRefGoogle Scholar
  10. 10.
    Schulz, E., Karas, M., Rosu, F., Gabelica, V.: Influence of the matrix on analyte fragmentation in atmospheric pressure MALDI. J. Am. Soc. Mass Spectrom. 17, 1005–1013 (2006)CrossRefGoogle Scholar
  11. 11.
    Moskovets, E.: Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization. Rapid Commun. Mass Spectrom. 29, 1501–1512 (2015)CrossRefGoogle Scholar
  12. 12.
    Robichaud, G., Barry, J.A., Muddiman, D.C.: IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J. Am. Soc. Mass Spectrom. 25, 319–328 (2014)CrossRefGoogle Scholar
  13. 13.
    Gabellca, V., De Pauw, E.: Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24, 566–587 (2005)CrossRefGoogle Scholar
  14. 14.
    Gabelica, V., De Pauw, E., Karas, M.: Influence of the capillary temperature and the source pressure on the internal energy distribution of electrosprayed ions. Int. J. Mass Spectrom. 231, 189–195 (2004)CrossRefGoogle Scholar
  15. 15.
    Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernández, F.M.: Comparison of the internal energy deposition of direct analysis in real time and electrospray ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 855–863 (2010)CrossRefGoogle Scholar
  16. 16.
    Luo, G., Marginean, I., Vertes, A.: Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 74, 6185–6190 (2002)CrossRefGoogle Scholar
  17. 17.
    Gabelica, V., Schulz, E., Karas, M.: Internal energy build-up in matrix-assisted laser desorption/ionization. J. Mass Spectrom. 39, 579–593 (2004)CrossRefGoogle Scholar
  18. 18.
    Nefliu, M., Smith, J.N., Venter, A., Cooks, R.G.: Internal energy distributions in desorption electrospray ionization (DESI). J. Am. Soc. Mass Spectrom. 19, 420–427 (2008)CrossRefGoogle Scholar
  19. 19.
    Badu-Tawiah, A., Bland, C., Campbell, D.I., Cooks, R.G.: Non-aqueous spray solvents and solubility effects in desorption electrospray ionization. J. Am. Soc. Mass Spectrom. 21, 572–579 (2010)CrossRefGoogle Scholar
  20. 20.
    Greisch, J.F., Gabelica, V., Remacle, F., De Pauw, E.: Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Rapid Commun. Mass Spectrom. 17, 1847–1854 (2003)CrossRefGoogle Scholar
  21. 21.
    Khodjaniyazova, S., Nazari, M., Garrard, K.P., Matos, M.P.V., Jackson, G.P., Muddiman, D.C.: Characterization of the spectral accuracy of an orbitrap mass analyzer using isotope ratio mass spectrometry. Anal. Chem. 90, 1897–1906 (2018)CrossRefGoogle Scholar
  22. 22.
    Robichaud, G., Barry, J.A., Garrard, K.P., Muddiman, D.C.: Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 92–100 (2013)CrossRefGoogle Scholar
  23. 23.
    Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 24, 2534–2536 (2008)CrossRefGoogle Scholar
  24. 24.
    Race, A.M., Styles, I.B., Bunch, J.: Inclusive sharing of mass spectrometry imaging data requires a converter for all. J. Proteome. 75, 5111–5112 (2012)CrossRefGoogle Scholar
  25. 25.
    Robichaud, G., Garrard, K.P., Barry, J.A., Muddiman, D.C.: MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24, 718–721 (2013)CrossRefGoogle Scholar
  26. 26.
    Bokhart, M.T., Nazari, M., Garrard, K.P., Muddiman, D.C.: MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J. Am. Soc. Mass Spectrom. 29, 8–16 (2018)CrossRefGoogle Scholar
  27. 27.
    Brendle, K., Kordel, M., Schneider, E., Wagner, D., Bräse, S., Weis, P., Kappes, M.M.: Collision induced dissociation of benzylpyridinium-substituted porphyrins: towards a thermometer scale for multiply charged ions? J. Am. Soc. Mass Spectrom. 29, 382–392 (2018)CrossRefGoogle Scholar
  28. 28.
    Hampton, C.Y., Silvestri, C.J., Forbes, T.P., Varady, M.J., Meacham, J.M., Fedorov, A.G., Degertekin, F.L., Fernández, F.M.: Comparison of the internal energy deposition of Venturi-assisted electrospray ionization and a Venturi-assisted array of micromachined ultrasonic electrosprays (AMUSE). J. Am. Soc. Mass Spectrom. 19, 1320–1329 (2008)CrossRefGoogle Scholar
  29. 29.
    Nemes, P., Huang, H., Vertes, A.: Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization. Phys. Chem. Chem. Phys. 14, 2501–2507 (2012)CrossRefGoogle Scholar
  30. 30.
    Collette, C., De Pauw, E.: Calibration of the internal energy distribution of ions produced by electrospray. Rapid Commun. Mass Spectrom. 12, 165–170 (1998)CrossRefGoogle Scholar
  31. 31.
    Flanigan, P.M., Shi, F., Archer, J.J., Levis, R.J.: Internal energy deposition for low energy, femtosecond laser vaporization and nanospray post-ionization mass spectrometry using thermometer ions. J. Am. Soc. Mass Spectrom. 26, 716–724 (2015)CrossRefGoogle Scholar
  32. 32.
    Omary, M.A., Patterson, H.H.: Luminescence, Theory. Encycl. Spectrosc. Spectrom (Third Edition), 636–653 (2017)Google Scholar
  33. 33.
    Tu, A., Muddiman, D.C.: Systematic evaluation of repeatability of IR-MALDESI-MS and normalization strategies for correcting the analytical variation and improving image quality. Anal. Bioanal. Chem. 411, 5729–5743 (2019)Google Scholar
  34. 34.
    Rosen, E.P., Bokhart, M.T., Ghashghaei, H.T., Muddiman, D.C.: Influence of desorption conditions on analyte sensitivity and internal energy in discrete tissue or whole body imaging by IR-MALDESI. J. Am. Soc. Mass Spectrom. 26, 899–910 (2015)CrossRefGoogle Scholar
  35. 35.
    Dreisewerd, K., Draude, F., Kruppe, S., Rohlfing, A., Berkenkamp, S., Pohlentz, G.: Molecular analysis of native tissue and whole oils by infrared laser mass spectrometry. Anal. Chem. 79, 4514–4520 (2007)CrossRefGoogle Scholar
  36. 36.
    Nazari, M., Bokhart, M.T., Muddiman, D.C.: Whole-body mass spectrometry imaging by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). J. Vis. Exp. 109, e53942 (2016)Google Scholar
  37. 37.
    Pirkl, A., Soltwisch, J., Draude, F., Dreisewerd, K.: Infrared matrix-assisted laser desorption/ionization orthogonal-time-of-flight mass spectrometry employing a cooling stage and water ice as a matrix. Anal. Chem. 84, 5669–5676 (2012)CrossRefGoogle Scholar
  38. 38.
    Von Seggern, C.E., Gardner, B.D., Cotter, R.J.: Infrared atmospheric pressure MALDI ion trap mass spectrometry of frozen samples using a peltier-cooled sample stage. Anal. Chem. 76, 5887–5893 (2004)CrossRefGoogle Scholar
  39. 39.
    Goodwin, R.J.A., Iverson, S.L., Andren, P.E.: The significance of ambient-temperature on pharmaceutical and endogenous compound abundance and distribution in tissues sections when analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Rapid Commun. Mass Spectrom. 26, 494–498 (2012)CrossRefGoogle Scholar
  40. 40.
    Li, Y.-T., Hsieh, Y.-L., Henion, J.D., Ganem, B.: Studies on heme binding in myoglobin, hemoglobin, and cytochrome c by ion spray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 631–637 (1993)CrossRefGoogle Scholar
  41. 41.
    Chen, Y.-L., Campbell, J.M., Collings, B.A., Konermann, L., Douglas, D.J.: Stability of a highly charged noncovalent complex in the gas phase: holomyoglobin. Rapid Commun. Mass Spectrom. 12, 1003–1010 (1998)CrossRefGoogle Scholar
  42. 42.
    Zhang, W., Niu, S., Chait, B.T.: Exploring infrared wavelength matrix-assisted laser desorption/ionization of proteins with delayed-extraction time-offlight mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 879–884 (1998)Google Scholar
  43. 43.
    Karki, S., Sistani, H., Archer, J.J., Shi, F., Levis, R.J.: Isolating protein charge state reduction in electrospray droplets using femtosecond laser vaporization. J. Am. Soc. Mass Spectrom. 28, 470–478 (2017)CrossRefGoogle Scholar
  44. 44.
    Karki, S., Flanigan, P.M., Perez, J.J., Archer, J.J., Levis, R.J.: Increasing protein charge state when using laser electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 706–715 (2015)CrossRefGoogle Scholar
  45. 45.
    Shiea, J., Yuan, C.H., Huang, M.Z., Cheng, S.C., Ma, Y.L., Tseng, W.L., Chang, H.C., Hung, W.C.: Detection of native protein ions in aqueous solution under ambient conditions by electrospray laser desorption/ionization mass spectrometry. Anal. Chem. 80, 4845–4852 (2008)CrossRefGoogle Scholar
  46. 46.
    Loo, J.A., Giordani, A.B., Muenster, H.: Observation of intact (heme-bound) myoglobin by electrospray ionization on a double-focusing mass spectrometer. Rapid Commun. Mass Spectrom. 7, 186–189 (1993)CrossRefGoogle Scholar
  47. 47.
    Brenner-Weiss, G., Kirschhöfer, F., Kühl, B., Nusser, M., Obst, U.: Analysis of non-covalent protein complexes by capillary electrophoresis-time-of-flight mass spectrometry. J. Chromatogr. A. 1009, 147–153 (2003)CrossRefGoogle Scholar
  48. 48.
    Mortensen, D.N., Williams, E.R.: Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal. Chem. 87, 1281–1287 (2015)CrossRefGoogle Scholar
  49. 49.
    Van Berkel, G.J., Kertesz, V.: Using the electrochemistry of the electrospray ion source. Anal. Chem. 79, 5510–5520 (2007)CrossRefGoogle Scholar
  50. 50.
    Konermann, L.: Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017)CrossRefGoogle Scholar
  51. 51.
    Katta, V., Chait, B.T.: Observation of the heme-globin complex in native myoglobin by electrospray-ionization mass spectrometry. J. Am. Chem. Soc. 113, 8534–8535 (1991)CrossRefGoogle Scholar
  52. 52.
    Chen, Z., Vertes, A.: Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets. Phys. Rev. E. 77, 036316 (2008)Google Scholar
  53. 53.
    Apitz, I., Vogel, A.: Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A Mater. Sci. Process. 81, 329–338 (2005)CrossRefGoogle Scholar
  54. 54.
    Bae, Y.J., Moon, J.H., Kim, M.S.: Expansion cooling in the matrix plume is under-recognized in MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 1070–1078 (2011)CrossRefGoogle Scholar
  55. 55.
    Van Berkel, G.J., Pasilis, S.P., Ovchinnikova, O.: Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 43, 1161–1180 (2008)CrossRefGoogle Scholar
  56. 56.
    Li, G., Cao, Q., Liu, Y., DeLaney, K., Tian, Z., Moskovets, E., Li, L.: Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 33, 327–335 (2019)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighUSA

Personalised recommendations