Electrospray Ionization–Based Synthesis and Validation of Amine-Sulfuric Acid Clusters of Relevance to Atmospheric New Particle Formation

  • Sarah E. Waller
  • Yi Yang
  • Eleanor Castracane
  • John J. Kreinbihl
  • Kathleen A. Nickson
  • Christopher J. JohnsonEmail author
Research Article


Atmospheric new particle formation (NPF) is the process by which atmospheric trace gases such as sulfuric acid, ammonia, and amines cluster and grow into climatically relevant particles. The mechanism by which these particles form and grow has remained unclear, in large part due to difficulties in obtaining molecular-level information about the clusters as they grow. Mass spectrometry–based methods using electrospray ionization (ESI) as a cluster source have shed light on this process, but the produced cluster distributions have not been rigorously validated against experiments performed in atmospheric conditions. Ionic clusters are produced by ESI of solutions containing the amine and bisulfate or by spraying a sulfuric acid solution and introducing trace amounts of amine gas into the ESI environment. The amine content of clusters can be altered by increasing the amount of amine introduced into the ESI environment, and certain cluster compositions can only be made by the vapor exchange method. Both approaches are found to yield clusters with the same structures. Aminium bisulfate cluster distributions produced in a controlled and isolated ESI environment can be optimized to closely resemble those observed by chemical ionization in the CLOUD chamber at CERN. These studies indicate that clusters generated by ESI are also observed in traditional atmospheric measurements, which puts ESI mass spectrometry–based studies on firmer footing and broadens the scope of traditional mass spectrometry experiments that may be applied to NPF.


New particle formation Aerosols Electrospray ionization Ion source Vibrational spectroscopy 



The authors received funding from the National Science Foundation under grant CHE-1566019 and Stony Brook University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

13361_2019_2322_MOESM1_ESM.pdf (763 kb)
ESM 1 (PDF 763 kb)


  1. 1.
    Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., Peters, A.: Health effects of particulate air pollution: a review of epidemiological evidence. Inhal. Toxicol. 23, 555–592 (2011)CrossRefGoogle Scholar
  2. 2.
    Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. Cambridge Univ. Press, Cambridge and New York (2013)Google Scholar
  3. 3.
    Nash, D.G., Baer, T., Johnston, M.V.: Aerosol mass spectrometry: an introductory review. Int. J. Mass Spectrom. 258, 2–12 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhao, J., Eisele, F.L., Titcombe, M., Kuang, C.G., McMurry, P.H.: Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS. J. Geophys. Res. Atmos. 115, D08205 (2010)Google Scholar
  5. 5.
    Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin Iii, R.L., Kulmala, M., Worsnop, D.R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12, 4117–4125 (2012)CrossRefGoogle Scholar
  6. 6.
    Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H.E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P.P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R.L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M.V., Smith, J.N., Ehn, M., Mentel, T.F., Lehtinen, K.E.J., Laaksonen, A., Kerminen, V.-M., Worsnop, D.R.: Direct observations of atmospheric aerosol nucleation. Science. 339, 943–946 (2013)CrossRefGoogle Scholar
  7. 7.
    Dunne, E.M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I.K., Pringle, K.J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N.M., Ehrhart, S., Flagan, R.C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M.J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C.L.S., Riccobono, F., Richards, N.A.D., Rissanen, M.P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipilä, M., Smith, J.N., Stozkhov, Y., Tomé, A., Tröstl, J., Wagner, P.E., Wimmer, D., Winkler, P.M., Worsnop, D.R., Carslaw, K.S.: Global atmospheric particle formation from CERN CLOUD measurements. Science. 354, 1119–1124 (2016)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Ahlm, L., Yli-Juuti, T., Lawler, M., Keskinen, H., Tröstl, J., Schobesberger, S., Duplissy, J., Amorim, A., Bianchi, F., Donahue, N.M., Flagan, R.C., Hakala, J., Heinritzi, M., Jokinen, T., Kürten, A., Laaksonen, A., Lehtipalo, K., Miettinen, P., Petaja, T., Rissanen, M.P., Rondo, L., Sengupta, K., Simon, M., Tomé, A., Williamson, C., Wimmer, D., Winkler, P.M., Ehrhart, S., Ye, P., Kirkby, J., Curtius, J., Baltensperger, U., Kulmala, M., Lehtinen, K.E.J., Smith, J.N., Riipinen, I., Virtanen, A.: Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmos. Chem. Phys. 16, 293–304 (2016)CrossRefGoogle Scholar
  9. 9.
    Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N.M., Duplissy, J., Flagan, R.C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M.P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., McMurry, P.H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmos. Chem. Phys. 18, 845–863 (2018)CrossRefGoogle Scholar
  10. 10.
    Wagner, R., Yan, C., Lehtipalo, K., Duplissy, J., Nieminen, T., Kangasluoma, J., Ahonen, L.R., Dada, L., Kontkanen, J., Manninen, H.E., Dias, A., Amorim, A., Bauer, P.S., Bergen, A., Bernhammer, A.K., Bianchi, F., Brilke, S., Mazon, S.B., Chen, X., Draper, D.C., Fischer, L., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., Heikkinen, L., Heinritzi, M., Hofbauer, V., Hoyle, C.R., Kirkby, J., Kürten, A., Kvashnin, A.N., Laurila, T., Lawler, M.J., Mai, H., Makhmutov, V., Mauldin Iii, R.L., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Piel, F., Quéléver, L.L.J., Rissanen, M.P., Sarnela, N., Schallhart, S., Sengupta, K., Simon, M., Stolzenburg, D., Stozhkov, Y., Tröstl, J., Viisanen, Y., Vogel, A.L., Wagner, A.C., Xiao, M., Ye, P., Baltensperger, U., Curtius, J., Donahue, N.M., Flagan, R.C., Gallagher, M., Hansel, A., Smith, J.N., Tomé, A., Winkler, P.M., Worsnop, D., Ehn, M., Sipilä, M., Kerminen, V.M., Petäjä, T., Kulmala, M.: The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17, 15181–15197 (2017)CrossRefGoogle Scholar
  11. 11.
    Zollner, J.H., Glasoe, W.A., Panta, B., Carlson, K.K., McMurry, P.H., Hanson, D.R.: Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases. Atmos. Chem. Phys. Discuss. 12, 1117–1150 (2012)CrossRefGoogle Scholar
  12. 12.
    Jen, C.N., McMurry, P.H.: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. J. Geophys. Res. Atmos. 119, 7502–7514 (2014)CrossRefGoogle Scholar
  13. 13.
    Glasoe, W.A., Volz, K., Panta, B., Freshour, N., Bachman, R., Hanson, D.R., McMurry, P.H., Jen, C.N.: Sulfuric acid nucleation: an experimental study of the effect of seven bases. J. Geophys. Res. Atmos. 120, 1933–1950 (2015)CrossRefGoogle Scholar
  14. 14.
    Jen, C.N., Bachman, R., Zhao, J., McMurry, P.H., Hanson, D.R.: Diamine-sulfuric acid reactions are a potent source of new particle formation. Geophys. Res. Lett. 43, 867–873 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, M., Titcombe, M., Jiang, J., Jen, C., Kuang, C., Fischer, M.L., Eisele, F.L., Siepmann, J.I., Hanson, D.R., Zhao, J., McMurry, P.H.: Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proc. Natl. Acad. Sci. 109, 18713 (2012)CrossRefGoogle Scholar
  16. 16.
    Almeida, J., Schobesberger, S., Kürten, A., Ortega, I.K., Kupiainen-Määttä, O., Praplan, A.P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N.M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R.C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A.N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M.J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F.D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J.H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P.E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K.S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D.R., Vehkamäki, H., Kirkby, J.: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature. 502, 359–363 (2013)CrossRefGoogle Scholar
  17. 17.
    Myllys, N., Olenius, T., Kurtén, T., Vehkamäki, H., Riipinen, I., Elm, J.: Effect of bisulfate, ammonia, and ammonium on the clustering of organic acids and sulfuric acid. J. Phys. Chem. A. 121, 4812–4824 (2017)CrossRefGoogle Scholar
  18. 18.
    Bianchi, F., Praplan, A.P., Sarnela, N., Dommen, J., Kürten, A., Ortega, I.K., Schobesberger, S., Junninen, H., Simon, M., Tröstl, J., Jokinen, T., Sipilä, M., Adamov, A., Amorim, A., Almeida, J., Breitenlechner, M., Duplissy, J., Ehrhart, S., Flagan, R.C., Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Kangasluoma, J., Keskinen, H., Kim, J., Kirkby, J., Laaksonen, A., Lawler, M.J., Lehtipalo, K., Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Riccobono, F., Rissanen, M.P., Rondo, L., Tomé, A., Virtanen, A., Viisanen, Y., Williamson, C., Wimmer, D., Winkler, P.M., Ye, P., Curtius, J., Kulmala, M., Worsnop, D.R., Donahue, N.M., Baltensperger, U.: Insight into acid–base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters. Environ. Sci. Technol. 48, 13675–13684 (2014)CrossRefGoogle Scholar
  19. 19.
    Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., Ortega, I.K., Metzger, A., Schnitzhofer, R., Almeida, J., Amorim, A., Dommen, J., Dunne, E.M., Ehn, M., Gagné, S., Ickes, L., Junninen, H., Hansel, A., Kerminen, V.M., Kirkby, J., Kupc, A., Laaksonen, A., Lehtipalo, K., Mathot, S., Onnela, A., Petaja, T., Riccobono, F., Santos, F.D., Sipila, M., Tomé, A., Tsagkogeorgas, G., Viisanen, Y., Wagner, P.E., Wimmer, D., Curtius, J., Donahue, N.M., Baltensperger, U., Kulmala, M., Worsnop, D.R.: On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmos. Chem. Phys. 15, 55–78 (2015)CrossRefGoogle Scholar
  20. 20.
    Ouyang, H., He, S., Larriba-Andaluz, C., Hogan, C.J.: IMS–MS and IMS–IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters. J. Phys. Chem. A. 119, 2026–2036 (2015)CrossRefGoogle Scholar
  21. 21.
    Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A., Manninen, H.E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D.R., Kulmala, M., Dommen, J., Baltensperger, U.: New particle formation in the free troposphere: a question of chemistry and timing. Science. 352, 1109–1112 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E., Tie, X., Molina, L., Molina, M.: Atmospheric new particle formation enhanced by organic acids. Science. 304, 1487–1490 (2004)CrossRefGoogle Scholar
  23. 23.
    Elm, J., Passananti, M., Kurtén, T., Vehkamäki, H.: Diamines can initiate new particle formation in the atmosphere. J. Phys. Chem. A. 121, 6155–6164 (2017)CrossRefGoogle Scholar
  24. 24.
    Chen, H., Ezell, M.J., Arquero, K.D., Varner, M.E., Dawson, M.L., Gerber, R.B., Finlayson-Pitts, B.J.: New particle formation and growth from methanesulfonic acid, trimethylamine and water. Phys. Chem. Chem. Phys. 17, 13699–13709 (2015)CrossRefGoogle Scholar
  25. 25.
    Bzdek, B.R., Horan, A.J., Pennington, M.R., DePalma, J.W., Zhao, J., Jen, C.N., Hanson, D.R., Smith, J.N., McMurry, P.H., Johnston, M.V.: Quantitative and time-resolved nanoparticle composition measurements during new particle formation. Faraday Discuss. 165, 25–43 (2013)CrossRefGoogle Scholar
  26. 26.
    Bzdek, B.R., DePalma, J.W., Johnston, M.V.: Mechanisms of atmospherically relevant cluster growth. Acc. Chem. Res. 50, 1965–1975 (2017)CrossRefGoogle Scholar
  27. 27.
    Weber, R.J., Marti, J.J., McMurry, P.H., Eisele, F.L., Tanner, D.J., Jefferson, A.: Measured atmospheric new particle formation rates: implications for nucleation mechanisms. Chem. Eng. Commun. 151, 53–64 (1996)CrossRefGoogle Scholar
  28. 28.
    Kulmala, M., Pirjola, L., Mäkelä, J.M.: Stable sulphate clusters as a source of new atmospheric particles. Nature. 404, 66–69 (2000)CrossRefGoogle Scholar
  29. 29.
    Ortega, I.K., Kurtén, T., Vehkamäki, H., Kulmala, M.: The role of ammonia in sulfuric acid ion induced nucleation. Atmos. Chem. Phys. 8, 2859–2867 (2008)CrossRefGoogle Scholar
  30. 30.
    Loukonen, V., Kurtén, T., Ortega, I.K., Vehkamäki, H., Pádua, A.A.H., Sellegri, K., Kulmala, M.: Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study. Atmos. Chem. Phys. 10, 4961–4974 (2010)CrossRefGoogle Scholar
  31. 31.
    Tsona, N.T., Henschel, H., Bork, N., Loukonen, V., Vehkamäki, H.: Structures, hydration, and electrical mobilities of bisulfate ion–sulfuric acid–ammonia/dimethylamine clusters: a computational study. J. Phys. Chem. A. 119, 9670–9679 (2015)CrossRefGoogle Scholar
  32. 32.
    Henschel, H., Kurtén, T., Vehkamäki, H.: Computational study on the effect of hydration on new particle formation in the sulfuric acid/ammonia and sulfuric acid/dimethylamine systems. J. Phys. Chem. A. 120, 1886–1896 (2016)CrossRefGoogle Scholar
  33. 33.
    Ahlm, L., Yli-Juuti, T., Schobesberger, S., Praplan, A.P., Kim, J., Tikkanen, O.P., Lawler, M.J., Smith, J.N., Tröstl, J., Acosta Navarro, J.C., Baltensperger, U., Bianchi, F., Donahue, N.M., Duplissy, J., Franchin, A., Jokinen, T., Keskinen, H., Kirkby, J., Kürten, A., Laaksonen, A., Lehtipalo, K., Petäjä, T., Riccobono, F., Rissanen, M.P., Rondo, L., Schallhart, S., Simon, M., Winkler, P.M., Worsnop, D.R., Virtanen, A., Riipinen, I.: Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Sci. Technol. 50, 1017–1032 (2016)CrossRefGoogle Scholar
  34. 34.
    Elm, J.: Elucidating the limiting steps in sulfuric acid–base new particle formation. J. Phys. Chem. A. 121, 8288–8295 (2017)CrossRefGoogle Scholar
  35. 35.
    Olenius, T., Halonen, R., Kurtén, T., Henschel, H., Kupiainen-Määttä, O., Ortega, I.K., Jen, C.N., Vehkamäki, H., Riipinen, I.: New particle formation from sulfuric acid and amines: comparison of mono-, di-, and trimethylamines. J. Geophys. Res. Atmos. 122, 7103–7118 (2017)CrossRefGoogle Scholar
  36. 36.
    DePalma, J.W., Bzdek, B.R., Doren, D.J., Johnston, M.V.: Structure and energetics of nanometer size clusters of sulfuric acid with ammonia and dimethylamine. J. Phys. Chem. A. 116, 1030–1040 (2012)CrossRefGoogle Scholar
  37. 37.
    Kildgaard, J.V., Mikkelsen, K.V., Bilde, M., Elm, J.: Hydration of atmospheric molecular clusters: a new method for systematic configurational sampling. J. Phys. Chem. A. 122, 5026–5036 (2018)CrossRefGoogle Scholar
  38. 38.
    Bzdek, B.R., Ridge, D.P., Johnston, M.V.: Size-dependent reactions of ammonium bisulfate clusters with dimethylamine. J. Phys. Chem. A. 114, 11638–11644 (2010)CrossRefGoogle Scholar
  39. 39.
    Bzdek, B.R., Ridge, D.P., Johnston, M.V.: Amine exchange into ammonium bisulfate and ammonium nitrate nuclei. Atmos. Chem. Phys. 10, 3495–3503 (2010)CrossRefGoogle Scholar
  40. 40.
    Bzdek, B.R., DePalma, J.W., Ridge, D.P.: Fragmentation energetics of clusters relevant to atmospheric new particle formation. J. Am. Chem. Soc. 135, 3276–3285 (2013)CrossRefGoogle Scholar
  41. 41.
    Lv, S.-S., Miao, S.-K., Ma, Y., Zhang, M.-M., Wen, Y., Wang, C.-Y., Zhu, Y.-P., Huang, W.: Properties and atmospheric implication of methylamine–sulfuric acid–water clusters. J. Phys. Chem. A. 119, 8657–8666 (2015)CrossRefGoogle Scholar
  42. 42.
    Henschel, H., Navarro, J.C.A., Yli-Juuti, T., Kupiainen-Määttä, O., Olenius, T., Ortega, I.K., Clegg, S.L., Kurtén, T., Riipinen, I., Vehkamäki, H.: Hydration of atmospherically relevant molecular clusters: computational chemistry and classical thermodynamics. J. Phys. Chem. A. 118, 2599–2611 (2014)CrossRefGoogle Scholar
  43. 43.
    Miller, Y., Chaban, G.M., Zhou, J., Asmis, K.R., Neumark, D.M., Gerber, R.B.: Vibrational spectroscopy of (SO4 2−)•(H2O)n clusters, n=1-5: harmonic and anharmonic calculations and experiment. J. Chem. Phys. 127, 094305 (2007)CrossRefGoogle Scholar
  44. 44.
    Yacovitch, T.I., Heine, N., Brieger, C., Wende, T.: Communication: vibrational spectroscopy of atmospherically relevant acid cluster anions: bisulfate versus nitrate core structures. J. Chem. Phys. 136, 241102 (2012)CrossRefGoogle Scholar
  45. 45.
    Yacovitch, T.I., Heine, N., Brieger, C., Wende, T., Hock, C., Neumark, D.M., Asmis, K.R.: Vibrational spectroscopy of bisulfate/sulfuric acid/water clusters: structure, stability, and infrared multiple-photon dissociation intensities. J. Phys. Chem. A. 117, 7081–7090 (2013)CrossRefGoogle Scholar
  46. 46.
    Hou, G.L., Lin, W., Deng, S.H.M., Zhang, J., Zheng, W.J., Paesani, F., Wang, X.B.: Negative ion photoelectron spectroscopy reveals thermodynamic advantage of organic acids in facilitating formation of bisulfate ion clusters: atmospheric implications. J. Phys. Chem. Lett. 4, 779–785 (2013)CrossRefGoogle Scholar
  47. 47.
    Heine, N., Asmis, K.R.: Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. Int. Rev. Phys. Chem. 34, 1–34 (2014)CrossRefGoogle Scholar
  48. 48.
    Johnson, C.J., Johnson, M.A.: Vibrational spectra and fragmentation pathways of size-selected, D2-tagged ammonium/methylammonium bisulfate clusters. J. Phys. Chem. A. 117, 13265–13274 (2013)CrossRefGoogle Scholar
  49. 49.
    Wiley, W.C., McLaren, I.H.: Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150–1157 (1955)CrossRefGoogle Scholar
  50. 50.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, Xiaosong, Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C.: Gaussian 09. Gaussian, Inc., Wallingford (2009)Google Scholar
  51. 51.
    Waller, S.E., Yang, Y., Castracane, E., Racow, E.E., Kreinbihl, J.J., Nickson, K.A., Johnson, C.J.: The interplay between hydrogen bonding and coulombic forces in determining the structure of sulfuric acid-amine clusters. J. Phys. Chem. Lett. 9, 1216–1222 (2018)CrossRefGoogle Scholar
  52. 52.
    Yang, Y., Waller, S.E., Kreinbihl, J.J., Johnson, C.J.: Direct link between structure and hydration in ammonium and aminium bisulfate clusters implicated in atmospheric new particle formation. J. Phys. Chem. Lett. 9, 5647–5652 (2018)CrossRefGoogle Scholar
  53. 53.
    Johnson, C.J., Fournier, J.A., Wolke, C.T., Johnson, M.A.: Ionic liquids from the bottom up: local assembly motifs in [EMIM][BF4] through cryogenic ion spectroscopy. J. Chem. Phys. 139, 224305 (2013)CrossRefGoogle Scholar
  54. 54.
    Froyd, K.D., Lovejoy, E.R.: Bond energies and structures of ammonia–sulfuric acid positive cluster ions. J. Phys. Chem. A. 116, 5886–5899 (2012)CrossRefGoogle Scholar
  55. 55.
    DePalma, J.W., Bzdek, B.R., Ridge, D.P., Johnston, M.V.: Activation barriers in the growth of molecular clusters derived from sulfuric acid and ammonia. J. Phys. Chem. A. 118, 11547–11554 (2014)CrossRefGoogle Scholar
  56. 56.
    Bzdek, B.R., DePalma, J.W., Ridge, D.P., Laskin, J., Johnston, M.V.: Fragmentation energetics of clusters relevant to atmospheric new particle formation. J. Am. Chem. Soc. 135, 3276–3285 (2013)CrossRefGoogle Scholar
  57. 57.
    Hogan, C.J., De la Mora, J.F.: Ion-pair evaporation from ionic liquid clusters. J. Am. Soc. Mass Spectrom. 21, 1382–1386 (2010)CrossRefGoogle Scholar
  58. 58.
    Fernández-García, J., de la Mora, J.F.: Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air. J. Am. Soc. Mass Spectrom. 24, 1872–1889 (2013)CrossRefGoogle Scholar
  59. 59.
    Thomas, J.M., He, S., Larriba-Andaluz, C., DePalma, J.W., Johnston, M.V., Hogan Jr., C.J.: Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters. Phys. Chem. Chem. Phys. 18, 22962–22972 (2016)CrossRefGoogle Scholar
  60. 60.
    Passananti, M., Zapadinsky, E., Zanca, T., Kangasluoma, J., Myllys, N., Rissanen, M.P., Kurtén, T., Ehn, M., Attoui, M., Vehkamäki, H.: How well can we predict cluster fragmentation inside a mass spectrometer? Chem. Commun. 55, 5946–5949 (2019)CrossRefGoogle Scholar
  61. 61.
    Bzdek, B.R., Ridge, D.P., Johnston, M.V.: Amine reactivity with charged sulfuric acid clusters. Atmos. Chem. Phys. 11, 8735–8743 (2011)CrossRefGoogle Scholar
  62. 62.
    Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T., Sarnela, N., Kürten, A., Ehrhart, S., Franchin, A., Nieminen, T., Riccobono, F., Sipilä, M., Yli-Juuti, T., Duplissy, J., Adamov, A., Ahlm, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., Dommen, J., Downard, A.J., Dunne, E.M., Flagan, R.C., Guida, R., Hakala, J., Hansel, A., Jud, W., Kangasluoma, J., Kerminen, V.-M., Keskinen, H., Kim, J., Kirkby, J., Kupc, A., Kupiainen-Määttä, O., Laaksonen, A., Lawler, M.J., Leiminger, M., Mathot, S., Olenius, T., Ortega, I.K., Onnela, A., Petäjä, T., Praplan, A., Rissanen, M.P., Ruuskanen, T., Santos, F.D., Schallhart, S., Schnitzhofer, R., Simon, M., Smith, J.N., Tröstl, J., Tsagkogeorgas, G., Tomé, A., Vaattovaara, P., Vehkamäki, H., Vrtala, A.E., Wagner, P.E., Williamson, C., Wimmer, D., Winkler, P.M., Virtanen, A., Donahue, N.M., Carslaw, K.S., Baltensperger, U., Riipinen, I., Curtius, J., Worsnop, D.R., Kulmala, M.: The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nat. Commun. 7, 11594 (2016)CrossRefGoogle Scholar
  63. 63.
    Kupiainen, O., Ortega, I.K., Kurtén, T., Vehkamäki, H.: Amine substitution into sulfuric acid - ammonia clusters. Atmos. Chem. Phys. 12, 3591–3599 (2012)CrossRefGoogle Scholar
  64. 64.
    Morrell, T.E., Shields, G.C.: Atmospheric implications for formation of clusters of ammonium and 1−10 water molecules. J. Phys. Chem. A. 114, 4266–4271 (2010)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryStony Brook UniversityStony BrookUSA

Personalised recommendations