Electrospray Photochemical Oxidation of Proteins

  • Remilekun O. Lawal
  • Fabrizio Donnarumma
  • Kermit K. MurrayEmail author
Short Communication


Photooxidation of peptides and proteins by pulsed ultraviolet laser irradiation of an electrospray in the ion source of a mass spectrometer was demonstrated. A 193-nm excimer laser at 1.5-mJ pulse energy was focused with a cylindrical lens at the exit of a nanoelectrospray capillary and ions were sampled into a quadrupole time-of-flight mass spectrometer. A solution containing a peptide or protein and hydrogen peroxide was infused into the spray at a flow rate of 1 μL/min using a syringe pump. The laser creates OH radicals directly in the spray which modify biomolecules within the spray droplet. These results indicate that photochemical oxidation of proteins can be initiated directly within electrospray droplets and detected by mass spectrometry.


Photochemical oxidation FPOP Electrospray Excimer Online Ultraviolet 



This work was supported by National Institutes of Health grant (R21 EB-023110).

Supplementary material

13361_2019_2313_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1970 kb)


  1. 1.
    Mark, L., Gill, M., Mahut, M., Derrick, P.: Dual nano-electrospray for probing solution interactions and fast reactions of complex biomolecules. Eur. J. Mass. Spectrom. 18, 439–446 (2012)CrossRefGoogle Scholar
  2. 2.
    Gu, H., Xu, N., Chen, H.: Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS). Anal. Bioanal. Chem. 403, 2145–2153 (2012)CrossRefGoogle Scholar
  3. 3.
    Berchtold, C., Bosilkovska, M., Daali, Y., Walder, B., Zenobi, R.: Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom. Rev. 33, 394–413 (2013)CrossRefGoogle Scholar
  4. 4.
    Koyanagi, G.K., Blagojevic, V., Bohme, D.K.: Applications of extractive electrospray ionization (EESI) in analytical chemistry. Int. J. Mass Spectrom. 379, 146–150 (2015)CrossRefGoogle Scholar
  5. 5.
    Monge, M.E., Harris, G.A., Dwivedi, P., Fernandez, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013)CrossRefGoogle Scholar
  6. 6.
    Takáts, Z., Schlosser, G., Vekey, K.: Hydrogen/deuterium exchange of electrosprayed ions in the atmospheric interface of a commercial triple–quadrupole mass spectrometer. Int. J. Mass Spectrom. 228, 729–741 (2003)CrossRefGoogle Scholar
  7. 7.
    Kostyukevich, Y., Kononikhin, A., Popov, I., Nikolaev, E.: Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry. Anal. Chem. 85, 5330–5334 (2013)CrossRefGoogle Scholar
  8. 8.
    Kharlamova, A., Prentice, B.M., Huang, T.-Y., McLuckey, S.A.: Electrospray droplet exposure to gaseous acids for the manipulation of protein charge state distributions. Anal. Chem. 82, 7422–7429 (2010)CrossRefGoogle Scholar
  9. 9.
    Kharlamova, A., McLuckey, S.A.: Negative electrospray droplet exposure to gaseous bases for the manipulation of protein charge state distributions. Anal. Chem. 83, 431–437 (2011)CrossRefGoogle Scholar
  10. 10.
    Prudent, M., Rossier, J.S., Lion, N., Girault, H.H.: Microfabricated dual sprayer for on-line mass tagging of phosphopeptides. Anal. Chem. 80, 2531–2538 (2008)CrossRefGoogle Scholar
  11. 11.
    Sundberg, B.N., Lagalante, A.F.: Coaxial electrospray ionization for the study of rapid in-source chemistry, pp. 1–7 (2018)Google Scholar
  12. 12.
    Mortensen, D.N., Williams, E.R.: Ultrafast (1 μs) mixing and fast protein folding in nanodrops monitored by mass spectrometry. J. Am. Chem. Soc. 138, 3453–3460 (2016)CrossRefGoogle Scholar
  13. 13.
    Mortensen, D.N., Williams, E.R.: Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal. Chem. 87, 1281–1287 (2014)CrossRefGoogle Scholar
  14. 14.
    Fisher, C.M., Kharlamova, A., McLuckey, S.A.: Affecting protein charge state distributions in nano-electrospray ionization via in-spray solution mixing using theta capillaries. Anal. Chem. 86, 4581–4588 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhao, F., Matt, S.M., Bu, J., Rehrauer, O.G., Ben-Amotz, D., McLuckey, S.A.: Joule heating and thermal denaturation of proteins in nano-ESI theta tips, pp. 1–10 (2017)Google Scholar
  16. 16.
    Jansson, E.T., Lai, Y.H., Santiago, J.G., Zare, R.N.: Rapid hydrogen–deuterium exchange in liquid droplets. J. Am. Chem. Soc. 139, 6851–6854 (2017)CrossRefGoogle Scholar
  17. 17.
    Arakawa, R., Lu, J., Yoshimura, A., Nozaki, K., Ohno, T., Doe, H., Matsuo, T.: Online mass analysis of reaction products by electrospray ionization. Photosubstitution of ruthenium(II) diimine complexes. Inorg. Chem. 34, 3874–3878 (1995)CrossRefGoogle Scholar
  18. 18.
    Ding, W., Johnson, K.A., Kutal, C., Amster, I.J.: Mechanistic studies of photochemical reactions with millisecond time resolution by electrospray ionization mass spectrometry. Anal. Chem. 75, 4624–4630 (2003)CrossRefGoogle Scholar
  19. 19.
    Chen, S., Wan, Q., Badu-Tawiah, A.K.: Picomole-scale real-time photoreaction screening: discovery of the visible-light-promoted dehydrogenation of tetrahydroquinolines under ambient conditions. Angew. Chem. 128, 9491–9495 (2016)CrossRefGoogle Scholar
  20. 20.
    Takamoto, K., Chance, M.R.: Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 35, 251–276 (2006)CrossRefGoogle Scholar
  21. 21.
    Maleknia, S.D., Chance, M.R., Downard, K.M.: Electrospray-assisted modification of proteins: a radical probe of protein structure. Rapid Commun. Mass Spectrom. 13, 2352–2358 (1999)CrossRefGoogle Scholar
  22. 22.
    Maleknia, S.D., Downard, K.M.: Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom. Rev. 20, 388–401 (2001)CrossRefGoogle Scholar
  23. 23.
    Zhang, M.M., Rempel, D.L., Gross, M.L.: A fast photochemical oxidation of proteins (FPOP) platform for free-radical reactions_ the carbonate radical anion with peptides and proteins. Free Radic. Biol. Med. 131, 126–132 (2019)CrossRefGoogle Scholar
  24. 24.
    Li, K.S., Shi, L., Gross, M.L.: Mass spectrometry-based fast photochemical oxidation of proteins (FPOP) for higher order structure characterization. Acc. Chem. Res. 51, 736–744 (2018)CrossRefGoogle Scholar
  25. 25.
    Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)CrossRefGoogle Scholar
  26. 26.
    Li, J., Chen, G.: The use of fast photochemical oxidation of proteins coupled with mass spectrometry in protein therapeutics discovery and development. Drug Discov. Today. 24, 829–834 (2019)CrossRefGoogle Scholar
  27. 27.
    Xu, G., Chance, M.R.: Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514–3543 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations