Validation Study of Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) in Heritage Science: Characterization of Natural and Synthetic Paint Varnishes by Portable Mass Spectrometry

  • Jacopo La Nasa
  • Francesca Modugno
  • Maria Perla Colombini
  • Ilaria DeganoEmail author
Research Article


The identification at molecular level of organic materials in heritage objects as paintings requires in most cases the collection of micro-samples followed by micro-destructive analysis. In this study, we explore the possibility to characterize natural and synthetic resins used as paint varnishes by mean of non-invasive analysis of released volatile organic compounds (VOCs) through selected ion flow tube-mass spectrometry (SIFT-MS). SIFT-MS is a portable direct mass spectrometric technique that achieves the analysis of VOCs at trace levels in real time, by controlled ultra-soft chemical ionization using eight different chemical ionization agents. We tested the portable instrumentation on different reference resins used as paint varnishes, both natural (mastic, dammar, and colophony) and synthetic (Paraloid B67, MS2A, Regalrez 1094, and polyvinyl acetate), to evaluate the possibility to acquire qualitative data for the identification of these materials in heritage objects avoiding any sampling. This new analytical approach was validated by comparison with the traditional approach for VOCs analysis based on solid phase micro extraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis. The results demonstrate the use of SIFT-MS as an in situ non-invasive and non-destructive mass spectrometric technique to identify organic materials, such as paint varnishes.


Mass spectrometry Natural resins Synthetic resins SPME-GC/MS SIFT-MS VOCs 



Financial support from Regione Toscana and SRA Instruments S.p.A (POR-FSE 2014-2020, MS-MOMus project: “Spettrometria di Massa SIFT portatile e identificazione di Materiali Organici in ambiente Museale”) are fully acknowledged. The authors wish to thank the students Fabiana Cordella and Adele Ferretti for their help with the experiments, and express gratitude to Dott. Andrea Carretta and Dott. Armando Miliazza (SRA Instruments S.p.A.) for their valuable advice on SIFT technology and applications.

Supplementary material

13361_2019_2305_MOESM1_ESM.pdf (515 kb)
Supporting Information. SPME-GC/MS chromatograms (PDF) with peak assignments. (PDF 515 kb)


  1. 1.
    Colombini, M.P., Modugno, F., Eds.: Organic mass spectrometry in art and archaeology. John Wiley & Sons (2009).
  2. 2.
    Degano, I., La Nasa, J.: Trends in high performance liquid chromatography for cultural heritage. Top. Curr. Chem. 374, 20 (2016)CrossRefGoogle Scholar
  3. 3.
    Degano, I., Modugno, F., Bonaduce, I., Ribechini, E., Colombini, M.P.: Recent advances in analytical pyrolysis to investigate organic materials in heritage science. Angew. Chem. Int. Ed. 57, 7313–7323 (2018)CrossRefGoogle Scholar
  4. 4.
    La Nasa, J., Biale, G., Sabatini, F., Degano, I., Colombini, M.P., Modugno, F.: Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Herit. Sci. 7, 8 (2019)CrossRefGoogle Scholar
  5. 5.
    La Nasa, J., Degano, I., Modugno, F., Colombini, M.P.: Industrial alkyd resins: characterization of pentaerythritol and phthalic acid esters using integrated mass spectrometry. Rapid Commun. Mass Spectrom. 29, 225–237 (2015)CrossRefGoogle Scholar
  6. 6.
    Orsini, S., La Nasa, J., Modugno, F., Colombini, M.P.: Characterization of Aquazol polymers using techniques based on pyrolysis and mass spectrometry. J. Anal. Appl. Pyrolysis. 104, 218–225 (2013)CrossRefGoogle Scholar
  7. 7.
    La Nasa, J., Biale, G., Ferriani, B., Colombini, M.P., Modugno, F.: A pyrolysis approach for characterizing and assessing degradation of polyurethane foam in cultural heritage objects. J. Anal. Appl. Pyrolysis. 134, 562–572 (2018)CrossRefGoogle Scholar
  8. 8.
    Salvadó, N., Butí, S., Tobin, M.J., Pantos, E., Prag, A.J.N., Pradell, T.: Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. Anal. Chem. 77, 3444–3451 (2005)CrossRefGoogle Scholar
  9. 9.
    Colombini, M.P., Modugno, F., Giannarelli, S., Fuoco, R., Matteini, M.: GC-MS characterization of paint varnishes. Microchem. J. 67, 385–396 (2000)CrossRefGoogle Scholar
  10. 10.
    La Nasa, J., Orsini, S., Degano, I., Rava, A., Modugno, F., Colombini, M.P.: A chemical study of organic materials in three murals by Keith Haring: a comparison of painting techniques. Microchem. J. 124, 940–948 (2016)CrossRefGoogle Scholar
  11. 11.
    Ryhl-Svendsen, M., Glastrup, J.: Acetic acid and formic acid concentrations in the museum environment measured by SPME-GC/MS. Atmos. Environ. 36, 3909–3916 (2002)CrossRefGoogle Scholar
  12. 12.
    Godoi, A.F.L., Van Vaeck, L., Van Grieken, R.: Use of solid-phase microextraction for the detection of acetic acid by ion-trap gas chromatography–mass spectrometry and application to indoor levels in museums. J. Chromatogr. A. 1067, 331–336 (2005)CrossRefGoogle Scholar
  13. 13.
    van Grieken, R., Janssens, K., Eds.: Cultural heritage conservation and environmental impact assessment by non-destructive testing and micro-analysis. CRC Press (2014) ISBN 9789058096814Google Scholar
  14. 14.
    Fenech, A., Strlič, M., Kralj Cigić, I., Levart, A., Gibson, L.T., de Bruin, G., Ntanos, K., Kolar, J., Cassar, M.: Volatile aldehydes in libraries and archives. Atmos. Environ. 44, 2067–2073 (2010)CrossRefGoogle Scholar
  15. 15.
    Dupont, A.L., Tétreault, J.: Cellulose degradation in an acetic acid environment. Stud. Conserv. 45, 201–210 (2000)Google Scholar
  16. 16.
    Bleton, J., Tchapla, A.: SPME/GC-MS in the Characterisation of Terpenic Resins. (2009)CrossRefGoogle Scholar
  17. 17.
    Lattuati-Derieux, A., Egasse, C., Thao-Heu, S., Balcar, N., Barabant, G., Lavédrine, B.: What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J. Cult. Herit. 14, 238–247 (2013)CrossRefGoogle Scholar
  18. 18.
    Strlič, M., Thomas, J., Trafela, T., Cséfalvayová, L., Kralj Cigić, I., Kolar, J., Cassar, M.: Material degradomics: on the smell of old books. Anal. Chem. 81, 8617–8622 (2009)CrossRefGoogle Scholar
  19. 19.
    Curran, K., Strlič, M.: Polymers and volatiles: using VOC analysis for the conservation of plastic and rubber objects. Stud. Conserv. 60, 1–14 (2015)CrossRefGoogle Scholar
  20. 20.
    Curran, K., Underhill, M., Gibson, L.T., Strlic, M.: The development of a SPME-GC/MS method for the analysis of VOC emissions from historic plastic and rubber materials. Microchem. J. 124, 909–918 (2016)CrossRefGoogle Scholar
  21. 21.
    Curran, K., Underhill, M., Grau-Bové, J., Fearn, T., Gibson, L.T., Strlič, M.: Classifying degraded modern polymeric museum artefacts by their smell. Angew. Chem. Int. Ed. 57, 7336–7340 (2018)CrossRefGoogle Scholar
  22. 22.
    Lattuati-Derieux, A., Thao, S., Langlois, J., Regert, M.: First results on headspace-solid phase microextraction-gas chromatography/mass spectrometry of volatile organic compounds emitted by wax objects in museums. J. Chromatogr. A. 1187, 239–249 (2008)CrossRefGoogle Scholar
  23. 23.
    Hamm, S., Bleton, J., Tchapla, A.: Headspace solid phase microextraction for screening for the presence of resins in Egyptian archaeological samples. J. Sep. Sci. 27, 235–243 (2004)CrossRefGoogle Scholar
  24. 24.
    Strlič, M., Menart, E., Cigić, I.K., Kolar, J., de Bruin, G., Cassar, M.: Emission of reactive oxygen species during degradation of iron gall ink. Polym. Degrad. Stab. 95, 66–71 (2010)CrossRefGoogle Scholar
  25. 25.
    Smith, D., Španěl, P.: Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 24, 661–700 (2005)CrossRefGoogle Scholar
  26. 26.
    Milligan, D.B., Francis, G.J., Prince, B.J., McEwan, M.J.: Demonstration of selected ion flow tube MS detection in the parts per trillion range. Anal. Chem. 79, 2537–2540 (2007)CrossRefGoogle Scholar
  27. 27.
    Španěl, P., Smith, D.: Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom. Rev. 30, 236–267 (2011)CrossRefGoogle Scholar
  28. 28.
    Ioannidis, K., Niazi, S., Deb, S., Mannocci, F., Smith, D., Turner, C.: Quantification by SIFT-MS of volatile compounds produced by the action of sodium hypochlorite on a model system of infected root canal content. PLoS One. 13, e0198649 (2018)CrossRefGoogle Scholar
  29. 29.
    Spesyvyi, A., Smith, D., Španěl, P.: Selected ion flow-drift tube mass spectrometry: quantification of volatile compounds in air and breath. Anal. Chem. 87, 12151–12160 (2015)CrossRefGoogle Scholar
  30. 30.
    Kumar, S., Huang, J., Abbassi-Ghadi, N., Španěl, P., Smith, D., Hanna, G.B.: Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal. Chem. 85, 6121–6128 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhu, S., Corsetti, S., Wang, Q., Li, C., Huang, Z., Nabi, G.: Optical sensory arrays for the detection of urinary bladder cancer related volatile organic compounds (VOCs). J. Biophotonics. 0, e201800165 (2018)Google Scholar
  32. 32.
    Van Kerrebroeck, S., Comasio, A., Harth, H., De Vuyst, L.: Impact of starter culture, ingredients, and flour type on sourdough bread volatiles as monitored by selected ion flow tube-mass spectrometry. Food Res. Int. 106, 254–262 (2018)CrossRefGoogle Scholar
  33. 33.
    Bajoub, A., Medina-Rodríguez, S., Ajal, E.A., Cuadros-Rodríguez, L., Monasterio, R.P., Vercammen, J., Fernández-Gutiérrez, A., Carrasco-Pancorbo, A.: A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: a reliable tool for Mediterranean origin-labeled olive oils authentication. Food Res. Int. 106, 233–242 (2018)CrossRefGoogle Scholar
  34. 34.
    Olivares, A., Dryahina, K., Navarro, J.L., Flores, M.N., Smith, D., Španěl, P.: Selected ion flow tube-mass spectrometry for absolute quantification of aroma compounds in the headspace of dry fermented sausages. Anal. Chem. 82, 5819–5829 (2010)CrossRefGoogle Scholar
  35. 35.
    Dryahina, K., Smith, D., Španěl, P.: Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 32, 739–750 (2018)CrossRefGoogle Scholar
  36. 36.
    Francis, G.J., Milligan, D.B., McEwan, M.J.: Detection and quantification of chemical warfare agent precursors and surrogates by selected ion flow tube mass spectrometry. Anal. Chem. 81, 8892–8899 (2009)CrossRefGoogle Scholar
  37. 37.
    Lattuati-Derieux, A., Bonnassies-Termes, S., Lavédrine, B.: Identification of volatile organic compounds emitted by a naturally aged book using solid-phase microextraction/gas chromatography/mass spectrometry. J. Chromatogr. A. 1026, 9–18 (2004)CrossRefGoogle Scholar
  38. 38.
    La Nasa, J., Mattonai, M., Modugno, F., Degano, I., Ribechini, E.: Comics’ VOC-abulary: study of the ageing of comic books in archival bags through VOCs profiling. Polym. Degrad. Stab. 161, 39–49 (2019)CrossRefGoogle Scholar
  39. 39.
    Amadei, G., Ross, B.M.: The reactions of a series of terpenoids with H3O+, NO+ and O studied using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 25, 162–168 (2011)CrossRefGoogle Scholar
  40. 40.
    Zachariadis, G., Langioli, A.: Headspace solid phase microextraction for terpenes and volatile compounds determination in mastic gum extracts, mastic oil and human urine by GC–MS. Anal. Lett. 45, 993–1003 (2012)CrossRefGoogle Scholar
  41. 41.
    Bonaduce, I., Di Girolamo, F., Corsi, I., Degano, I., Tinè, M.R., Colombini, M.P.: Terpenoid oligomers of dammar resin. J. Nat. Prod. 79, 845–856 (2016)CrossRefGoogle Scholar
  42. 42.
    Scalarone, D., Lazzari, M., Chiantore, O.: Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J. Anal. Appl. Pyrolysis. 64, 345–361 (2002)CrossRefGoogle Scholar
  43. 43.
    Bonaduce, I., Colombini, M.P., Degano, I., Di Girolamo, F., La Nasa, J., Modugno, F., Orsini, S.: Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes. Anal. Bioanal. Chem. 405, 1047–1065 (2013)CrossRefGoogle Scholar
  44. 44.
    Wang, T., Španěl, P., Smith, D.: Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. Int. J. Mass Spectrom. 228, 117–126 (2003)CrossRefGoogle Scholar
  45. 45.
    Reed, R.I.: Mass Spectra of Terpenes. Academic Press, New York (1963)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations