Advertisement

Absolute Quantitation of Oxidizable Peptides by Coulometric Mass Spectrometry

  • Pengyi Zhao
  • Richard N. ZareEmail author
  • Hao ChenEmail author
Research Article

Abstract

Quantitation methods for peptides using mass spectrometry have advanced rapidly. These methods rely on using standard and/or isotope-labeled peptides, which might be difficult or expensive to synthesize. To tackle this challenge, we present a new approach for absolute quantitation without the use of standards or calibration curves based on coulometry combined with mass spectrometry (MS). In this approach, which we call coulometric mass spectrometry (CMS), the mass spectrum of a target peptide containing one or more tyrosine residues is recorded before and after undergoing electrochemical oxidation. We record the total integrated oxidation current from the electrochemical measurement, which according to the Faraday’s Law of coulometry, provides the number of moles of oxidized peptide. The ion intensity ratio of the target peptide before and after oxidation provides an excellent estimate of the fraction of the peptide that has been oxidized, from which the total amount of peptide is calculated. The striking strength of CMS is that it needs no standard peptide, but CMS does require the peptide to contain a known number of oxidizable groups. To illustrate the power of this method, we analyzed various tyrosine-containing peptides such as GGYR, DRVY, oxytocin, [Arg8]-vasotocin and angiotensinogen 1–14 with a quantification error ranging from − 7.5 to + 2.4%. This approach is also applicable to quantifying phosphopeptides and could be useful in proteomics research.

Keywords

Mass spectrometry Electrochemistry Coulometry Quantitation Peptide 

Notes

Acknowledgements

This work was supported by NSF (CHE-1915878).

Supplementary material

13361_2019_2299_MOESM1_ESM.docx (524 kb)
ESM 1 (DOCX 524 kb)

References

  1. 1.
    Ong, S.-E., Mann, M.: Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bantscheff, M., Lemeer, S., Savitski, M.M., Kuster, B.: Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schubert, O.T., Röst, H.L., Collins, B.C., Rosenberger, G., Aebersold, R.: Quantitative proteomics: challenges and opportunities in basic and applied research. Nat. Protoc. 12, 1289–1294 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li, H., Han, J., Pan, J., Liu, T., Parker, C.E., Borchers, C.H.: Current trends in quantitative proteomics - an update. J. Mass Spectrom. 52, 319–341 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gallien, S., Duriez, E., Crone, C., Kellmann, M., Moehring, T., Domon, B.: Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol. Cell. Proteomics. 11, 1709–1723 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li, Q., Zubieta, J.-K., Kennedy, R.T.: Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off-line to capillary LC with multistage MS. Anal. Chem. 81, 2242–2250 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang, F., Xiao, Y., Wang, Y.: SILAC-based quantitative proteomic analysis unveils arsenite-induced perturbation of multiple pathways in human skin fibroblast cells. Chem. Res. Toxicol. 30, 1006–1014 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Serrano, M.A.C., He, H., Zhao, B., Ramireddy, R.R., Vachet, R.W., Thayumanavan, S.: Polymer-mediated ternary supramolecular interactions for sensitive detection of peptides. Analyst. 142, 118–122 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patti, G.J., Chen, J., Gross, M.L.: Method revealing bacterial cell-wall architecture by time-dependent isotope labeling and quantitative liquid chromatography/mass spectrometry. Anal. Chem. 81, 2437–2445 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jiang, W., Wysocki, V.H., Dodds, E.D., Miesfeld, R.L., Scaraffia, P.Y.: Differentiation and quantification of C1 and C2 13C-labeled glucose by tandem mass spectrometry. Anal. Biochem. 404, 40–44 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lindemann, C., Thomanek, N., Hundt, F., Lerari, T., Meyer, H.E., Wolters, D., Marcus, K.: Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol. Chem. 398, 687–699 (2017)CrossRefGoogle Scholar
  12. 12.
    Neilson, K.A., Ali, N.A., Muralidharan, S., Mirzaei, M., Mariani, M., Assadourian, G., Lee, A., van Sluyter, S.C., Haynes, P.A.: Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 11, 535–553 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar, P., Anderle, M., Becker, C.H.: Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75, 4818–4826 (2003)CrossRefGoogle Scholar
  14. 14.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)CrossRefGoogle Scholar
  15. 15.
    Heck, A.J., Krijgsveld, J.: Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics. 1, 317–326 (2004)CrossRefGoogle Scholar
  16. 16.
    Sechi, S., Oda, Y.: Quantitative proteomics using mass spectrometry. Curr. Opin. Chem. Biol. 7, 70–77 (2003)CrossRefGoogle Scholar
  17. 17.
    Righetti, P.G., Campostrini, N., Pascali, J., Hamdan, M., Astner, H.: Quantitative proteomics: a review of different methodologies. Eur. J. Mass Spectrom. 10, 335–348 (2004)CrossRefGoogle Scholar
  18. 18.
    Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M.: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 1, 376–386 (2002)CrossRefGoogle Scholar
  19. 19.
    Ong, S.-E., Foster, L.J., Mann, M.: Mass spectrometric-based approaches in quantitative proteomics. Methods. 29, 124–130 (2003)CrossRefGoogle Scholar
  20. 20.
    Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C.P., Plasterk, R.H.A., Heck, A.J.R.: Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21, 927–931 (2003)CrossRefGoogle Scholar
  21. 21.
    Wu, C.C., MacCoss, M.J., Howell, K.E., Matthews, D.E., Yates, J.R.: Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004)CrossRefGoogle Scholar
  22. 22.
    Gruhler, A., Schulze, W.X., Matthiesen, R., Mann, M., Jensen, O.N.: Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell. Proteomics. 4, 1697–1709 (2005)CrossRefGoogle Scholar
  23. 23.
    Wiese, S., Reidegeld, K.A., Meyer, H.E., Warscheid, B.: Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics. 7, 340–350 (2007)CrossRefGoogle Scholar
  24. 24.
    Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 3, 1154–1169 (2004)CrossRefGoogle Scholar
  25. 25.
    Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K.A., Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003)CrossRefGoogle Scholar
  26. 26.
    Han, H., Pappin, D.J., Ross, P.L., McLuckey, S.A.: Electron transfer dissociation of iTRAQ labeled peptide ions. J. Proteome Res. 7, 3643–3648 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu, H., Zhang, Y., Wang, J., Wang, D., Zhou, C., Cai, Y., Qian, X.: Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Anal. Chem. 78, 6614–6621 (2006)CrossRefGoogle Scholar
  28. 28.
    Schmidt, A., Kellermann, J., Lottspeich, F.: A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics. 5, 4–15 (2005)CrossRefGoogle Scholar
  29. 29.
    Xiang, F., Ye, H., Chen, R., Fu, Q., Li, L.: N,N-Dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal. Chem. 82, 2817–2825 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Frost, D.C., Greer, T., Li, L.: High-resolution enabled 12-Plex DiLeu isobaric tags for quantitative proteomics. Anal. Chem. 87, 1646–1654 (2015)CrossRefGoogle Scholar
  31. 31.
    Frost, D.C., Buchberger, A.R., Li, L.: Mass defect-based dimethyl pyrimidinyl ornithine (DiPyrO) tags for multiplex quantitative proteomics. Anal. Chem. 89, 10798–10805 (2017)CrossRefGoogle Scholar
  32. 32.
    Frost, D.C., Rust, C.J., Robinson, R.A.S., Li, L.: Increased N,N-dimethyl leucine isobaric tag multiplexing by a combined precursor isotopic labeling and isobaric tagging approach. Anal. Chem. 90, 10664–10669 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Narumi, R., Shimizu, Y., Ukai-Tadenuma, M., Ode, K.L., Kanda, G.N., Shinohara, Y., Sato, A., Matsumoto, K., Ueda, H.R.: Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins. Proc. Natl. Acad. Sci. U. S. A. 113, E3461–E3467 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lange, V., Picotti, P., Domon, B., Aebersold, R.: Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Boyd, B., Basic, C., Bethem, R.: Trace quantitative analysis by mass spectrometry. Wiley Press (2008).  https://doi.org/10.1002/9780470727140
  36. 36.
    Korfmacher, W.A.: Mass spectrometry for drug discovery and drug development. Wiley Press (2013).  https://doi.org/10.1002/9780470727140
  37. 37.
    Harriman, A.: Further comments on the redox potentials of tryptophan and tyrosine. J. Phys. Chem. 91, 6102–6104 (1987)CrossRefGoogle Scholar
  38. 38.
    Xu, C., Zheng, Q., Zhao, P., Paterson, J., Chen, H.: A new quantification method using electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 685–693 (2019)CrossRefGoogle Scholar
  39. 39.
    Zhao, P., Guo, Y., Dewald, H.D., Chen, H.: Improvements for absolute quantitation using electrochemical mass spectrometry. Int. J. Mass Spectrom. 443, 41–45 (2019)CrossRefGoogle Scholar
  40. 40.
    Kozlowski, L.P.: Proteome- pI : proteome isoelectric point database. Nucleic Acids Res. 45, D1112–D1116 (2017)CrossRefGoogle Scholar
  41. 41.
    Poole, L.B.: The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148–157 (2015)CrossRefGoogle Scholar
  42. 42.
    Scuderi, D., Bergès, J., de Oliveira, P., Houée-Levin, C.: Methionine one-electron oxidation: coherent contributions from radiolysis, IRMPD spectroscopy, DFT calculations and electrochemistry. Radiat. Phys. Chem. 128, 103–111 (2016)CrossRefGoogle Scholar
  43. 43.
    Permentier, H.P., Bruins, A.P., Bischoff, R.: Electrochemistry-mass spectrometry in drug metabolism and protein research. Mini Rev. Med. Chem. 8, 46–56 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Diehl, G., Karst, U.: On-line electrochemistry – MS and related techniques. Anal. Bioanal. Chem. 373, 390–398 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gun, J., Bharathi, S., Gutkin, V., Rizkov, D., Voloshenko, A., Shelkov, R., Sladkevich, S., Kyi, N., Rona, M., Wolanov, Y., Rizkov, D., Koch, M., Mizrahi, S., Pridkhochenko, P.V., Modestov, A., Lev, O.: Highlights in coupled electrochemical flow cell-mass spectrometry, EC/MS. Isr. J. Chem. 50, 360–373 (2010)CrossRefGoogle Scholar
  46. 46.
    Zhou, F., Van Berkel, G.J.: Electrochemistry combined online with electrospray mass spectrometry. Anal. Chem. 67, 3643–3649 (1995)CrossRefGoogle Scholar
  47. 47.
    Liu, Y.-M., Perry, R.H.: Paper-based electrochemical cell coupled to mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 1702–1712 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu, Y.-M., Nicolau, G.B., Esbenshade, J.L., Gewirth, A.A.: Characterization of the cathode electrolyte interface in lithium ion batteries by desorption electrospray ionization mass spectrometry. Anal. Chem. 88, 7171–7177 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Qiu, R., Zhang, X., Luo, H., Shao, Y.: Mass spectrometric snapshots for electrochemical reactions. Chem. Sci. 7, 6684–6688 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cheng, H., Yan, X., Zare, R.N.: Two new devices for identifying electrochemical reaction intermediates with desorption electrospray ionization mass spectrometry. Anal. Chem. 89, 3191–3198 (2017)CrossRefGoogle Scholar
  51. 51.
    Lu, J., Hua, X., Long, Y.-T.: Recent advances in real-time and in situ analysis of an electrode–electrolyte interface by mass spectrometry. Analyst. 142, 691–699 (2017)CrossRefGoogle Scholar
  52. 52.
    van den Brink, F.T.G., Büter, L., Odijk, M., Olthuis, W., Karst, U., van den Berg, A.: Mass spectrometric detection of short-lived drug metabolites generated in an electrochemical microfluidic chip. Anal. Chem. 87, 1527–1535 (2015)CrossRefGoogle Scholar
  53. 53.
    Brown, T.A., Chen, H., Zare, R.N.: Identification of fleeting electrochemical reaction intermediates using desorption electrospray ionization mass spectrometry. J. Am. Chem. Soc. 137, 7274–7277 (2015)CrossRefGoogle Scholar
  54. 54.
    Brown, T.A., Chen, H., Zare, R.N.: Detection of the short-lived radical cation intermediate in the electrooxidation of N,N-dimethylaniline by mass spectrometry. Angew. Chemie Int. Ed. 54, 11183–11185 (2015)CrossRefGoogle Scholar
  55. 55.
    Brown, T.A., Hosseini-Nassab, N., Chen, H., Zare, R.N.: Observation of electrochemically generated nitrenium ions by desorption electrospray ionization mass spectrometry. Chem. Sci. 7, 329–332 (2016)CrossRefGoogle Scholar
  56. 56.
    Cai, Y., Wang, J., Zhang, Y., Li, Z., Hu, D., Zheng, N., Chen, H.: Detection of fleeting amine radical cations and elucidation of chain processes in visible-light-mediated [3 + 2] annulation by online mass spectrometric techniques. J. Am. Chem. Soc. 139, 12259–12266 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Miao, Z., Chen, H.: Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J. Am. Soc. Mass Spectrom. 20, 10–19 (2009)CrossRefGoogle Scholar
  58. 58.
    Li, J., Dewald, H.D., Chen, H.: Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal. Chem. 81, 9716–9722 (2009)CrossRefGoogle Scholar
  59. 59.
    Zhang, Y., Dewald, H.D., Chen, H.: Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. J. Proteome Res. 10, 1293–1304 (2011)CrossRefGoogle Scholar
  60. 60.
    Zhang, Y., Yuan, Z., Dewald, H.D., Chen, H.: Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem. Commun. 47, 4171–4173 (2011)CrossRefGoogle Scholar
  61. 61.
    Lu, M., Wolff, C., Cui, W., Chen, H.: Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization. Anal. Bioanal. Chem. 403, 355–365 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu, P., Lu, M., Zheng, Q., Zhang, Y., Dewald, H.D., Chen, H.: Recent advances of electrochemical mass spectrometry. Analyst. 138, 5519 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zheng, Q., Chen, H.: Development and applications of liquid sample desorption electrospray ionization mass spectrometry. Annu. Rev. Anal. Chem. 9, 411–448 (2016)CrossRefGoogle Scholar
  64. 64.
    Roeser, J., Permentier, H.P., Bruins, A.P., Bischoff, R.: Electrochemical oxidation and cleavage of tyrosine- and tryptophan-containing tripeptides. Anal. Chem. 82, 7556–7565 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Permentier, H.P., Jurva, U., Barroso, B., Bruins, A.P.: Electrochemical oxidation and cleavage of peptides analyzed with on-line mass spectrometric detection. Rapid Commun. Mass Spectrom. 17, 1585–1592 (2003)CrossRefGoogle Scholar
  66. 66.
    Permentier, H.P., Bruins, A.P.: Electrochemical oxidation and cleavage of proteins with on-line mass spectrometric detection: development of an instrumental alternative to enzymatic protein digestion. J. Am. Soc. Mass Spectrom. 15, 1707–1716 (2004)CrossRefGoogle Scholar
  67. 67.
    Kageyama, R., Ohkubo, H., Nakanishi, S.: Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry. 23, 3603–3609 (1984)CrossRefGoogle Scholar
  68. 68.
    Qu, N., Wan, B., Guo, L.-H.: Label-free electrochemical differentiation of phosphorylated and non-phosphorylated peptide by electro-catalyzed tyrosine oxidation. Analyst. 133, 1246–1249 (2008)CrossRefGoogle Scholar
  69. 69.
    Kerman, K., Vestergaard, M., Chikae, M., Yamamura, S., Tamiya, E.: Label-free electrochemical detection of the phosphorylated and non-phosphorylated forms of peptides based on tyrosine oxidation. Electrochem. Commun. 9, 976–980 (2007)CrossRefGoogle Scholar
  70. 70.
    Robinson, M.R., Moore, K.L., Brodbelt, J.S.: Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1461–1471 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    McLachlin, D.T., Chait, B.T.: Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5, 591–602 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., Gygi, S.P.: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 100, 6940–6945 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yasuda, I., Kishimoto, A., Tanaka, S., Tominaga, M., Sakurai, A., Nishizuka, Y.: A synthetic peptide substrate for selective assay of protein kinase C. Biochem. Biophys. Res. Commun. 166, 1220–1227 (1990)CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tamvakopoulos, C.: Mass spectrometry for the quantification of bioactive peptides in biological fluids. Mass Spectrom. Rev. 26, 389–402 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dallas, D.C., Guerrero, A., Parker, E.A., Robinson, R.C., Gan, J., German, J.B., Barile, D., Lebrilla, C.B.: Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 15, 1026–1038 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lee, J.E.: Neuropeptidomics: mass spectrometry-based identification and quantitation of neuropeptides. Genomics Inform. 14, 12–19 (2016)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry & Environmental ScienceNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations