Advertisement

Leaving Group Effects in a Series of Electrosprayed CcHhN1 Anthracene Derivatives

  • Maha T. Abutokaikah
  • Giri R. Gnawali
  • Joseph W. Frye
  • Curtis M. Stump
  • John Tschampel
  • Matthew J. Murphy
  • Eli S. Lachance
  • Shanshan Guan
  • Christopher D. Spilling
  • Benjamin J. BythellEmail author
Research Article

Abstract

We investigate the gas-phase structures and fragmentation pathways of model compounds of anthracene derivatives of the general formula CcHhN1 utilizing tandem mass spectrometry and computational methods. We vary the substituent alkyl chain length, composition, and degree of branching. We find substantial experimental and theoretical differences between the linear and branched congeners in terms of fragmentation thresholds, available pathways, and distribution of products. Our calculations predict that the linear substituents initially isomerize to form lower energy branched isomers prior to loss of the alkyl substituents as alkenes. The rate-determining chemistry underlying these related processes is dominated by the ability to stabilize the alkene loss transition structures. This task is more effectively undertaken by branched substituents. Consequently, analyte lability systematically increased with degree of branching (linear < secondary < tertiary). The resulting anthracen-9-ylmethaniminium ion generated from these alkene loss reactions undergoes rate-limiting proton transfer to enable expulsion of either hydrogen cyanide or CNH. The combination of the differences in primary fragmentation thresholds and degree of radical-based fragmentation processes provide a potential means of distinguishing compounds that contain branched alkyl chain substituents from those with linear ones.

Keywords

Gas-phase structure Imine Density functional theory CID Petroleum Oil Protonation 

Notes

Acknowledgements

This work was supported by an American Chemical Society Petroleum Research Fund grant (56678-DNI6) and a University of Missouri Research Board Award. Maha T. Abutokaikah thanks the Saudi Arabia Culture Mission for funding part of her graduate work and the University of Missouri St. Louis for a Graduate Fellowship. Calculations were performed at the University of Missouri Science and Technology Rolla, MO.

Supplementary material

13361_2019_2298_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2870 kb)

References

  1. 1.
    Marshall, A.G., Rodgers, R.P.: Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37, 53–59 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Marshall, A.G., Rodgers, R.P.: Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. 105, 18090–18095 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Smith, D.F., Klein, G.C., Yen, A.T., Squicciarini, M.P., Rodgers, R.P., Marshall, A.G.: Crude oil polar chemical composition derived from FT−ICR mass spectrometry accounts for asphaltene inhibitor specificity. Energy Fuel. 22, 3112–3117 (2008)CrossRefGoogle Scholar
  4. 4.
    Rodgers, R.P., McKenna, A.M.: Petroleum analysis. Anal. Chem. 83, 4665–4687 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hsu, C.S., Hendrickson, C.L., Rodgers, R.P., McKenna, A.M., Marshall, A.G.: Petroleomics: advanced molecular probe for petroleum heavy ends. J. Mass Spectrom. 46, 337–343 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Anal. Chem. 83, 1732–1736 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kind, T., Fiehn, O.: Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinf. 8, 105 (2007)CrossRefGoogle Scholar
  8. 8.
    McLafferty, F.W.: Tandem mass spectrometry. Science. 214, 280–287 (1981)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bythell, B.J.: Comment on: “Quantum chemical mass spectrometry: verification and extension of the mobile proton model for histidine” by Julie Cautereels and Frank Blockhuys, J. Am. Soc. Mass Spectrom. 28, 1227–1235 (2017). J. Am. Soc. Mass Spectrom. 28, 2728–2730 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Domokos, L., Hennberg, D., Weimann, B.: Computer-aided identification of compounds by comparison of mass spectra. Anal. Chim. Acta. 165, 61–74 (1984)CrossRefGoogle Scholar
  11. 11.
    NIST/EPA/NIH Mass spectral Library: NIST Version 17, https://www.nist.gov/srd/nist-standard-reference-database-1a-v17
  12. 12.
    Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 20, 3551–3567 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frank, A., Pevzner, P.: PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77, 964–973 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Frewen, B.E., Merrihew, G.E., Wu, C.C., Noble, W.S., MacCoss, M.J.: Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal. Chem. 78, 5678–5684 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nesvizhskii, A.I.: Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 367, 87–119 (2007)PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lam, H., Aebersold, R.: Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics. Methods. 54, 424–431 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Podgorski, D.C., Corilo, Y.E., Nyadong, L., Lobodin, V.V., Bythell, B.J., Robbins, W.K., McKenna, A.M., Marshall, A.G., Rodgers, R.P.: Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuel. 27, 1268–1276 (2013)CrossRefGoogle Scholar
  19. 19.
    Qian, K., Edwards, K.E., Mennito, A.S., Freund, H., Saeger, R.B., Hickey, K.J., Francisco, M.A., Yung, C., Chawla, B., Wu, C., Kushnerick, J.D., Olmstead, W.N.: Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84, 4544–4551 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fernandez-Lima, F.A., Becker, C., McKenna, A.M., Rodgers, R.P., Marshall, A.G., Russell, D.H.: Petroleum crude oil characterization by IMS-MS and FTICR MS. Anal. Chem. 81, 9941–9947 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kim, S., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L., Marshall, A.G.: Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis. J. Am. Soc. Mass Spectrom. 20, 263–268 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi, Q., Hou, D., Chung, K.H., Xu, C., Zhao, S., Zhang, Y.: Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 24, 2545–2553 (2010)CrossRefGoogle Scholar
  23. 23.
    Hughey, C.A., Rodgers, R.P., Marshall, A.G.: Resolution of 11 000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem. 74, 4145–4149 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G.: Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 15, 1505–1511 (2001)CrossRefGoogle Scholar
  25. 25.
    Rodgers, R.P., Marshall, A.G.: Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Asphaltenes, heavy oils, and petroleomics. pp. 63–93 (2007)Google Scholar
  26. 26.
    Klein, G.C., Kim, S., Rodgers, R.P., Marshall, A.G., Yen, A.: Mass spectral analysis of asphaltenes. II. Detailed compositional comparison of asphaltenes deposit to its crude oil counterpart for two geographically different crude oils by ESI FT-ICR MS. Energy Fuel. 20, 1973–1979 (2006)CrossRefGoogle Scholar
  27. 27.
    McKenna, A.M., Purcell, J.M., Rodgers, R.P., Marshall, A.G.: Heavy petroleum composition. 1. Exhaustive compositional analysis of Athabasca bitumen HVGO distillates by Fourier transform ion cyclotron resonance mass spectrometry: a definitive test of the Boduszynski model. Energy Fuel. 24, 2929–2938 (2010)CrossRefGoogle Scholar
  28. 28.
    Corilo, Y.E., Vaz, B.G., Simas, R.C., Lopes Nascimento, H.D., Klitzke, C.F., Pereira, R.C.L., Bastos, W.L., Santos Neto, E.V., Rodgers, R.P., Eberlin, M.N.: Petroleomics by EASI(±) FT-ICR MS. Anal. Chem. 82, 3990–3996 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McKenna, A.M., Donald, L.J., Fitzsimmons, J.E., Juyal, P., Spicer, V., Standing, K.G., Marshall, A.G., Rodgers, R.P.: Heavy petroleum composition. 3. Asphaltene aggregation. Energy Fuel. 27, 1246–1256 (2013)CrossRefGoogle Scholar
  30. 30.
    Purcell, J.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1265–1273 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schaub, T.M., Rodgers, R.P., Marshall, A.G., Qian, K., Green, L.A., Olmstead, W.N.: Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry. Energy Fuel. 19, 1566–1573 (2005)CrossRefGoogle Scholar
  32. 32.
    Wittrig, A.M., Fredriksen, T.R., Qian, K., Clingenpeel, A.C., Harper, M.R.: Single Dalton collision-induced dissociation for petroleum structure characterization. Energy Fuel. 31, 13338–13344 (2017)CrossRefGoogle Scholar
  33. 33.
    Rodgers, R.P., Schaub, T.M., Marshall, A.G.: Petroleomics: MS returns to its roots. Anal. Chem. 77, 20 A–27 A (2005)CrossRefGoogle Scholar
  34. 34.
    Ruddy, B.M., Huettel, M., Kostka, J.E., Lobodin, V.V., Bythell, B.J., McKenna, A.M., Aeppli, C., Reddy, C.M., Nelson, R.K., Marshall, A.G., Rodgers, R.P.: Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy Fuel. 28, 4043–4050 (2014)CrossRefGoogle Scholar
  35. 35.
    Atlas, R.M.: Fate of oil from two major oil spills: role of microbial degradation in removing oil from the Amoco Cadiz and IXTOC I spills. Environ. Int. 5, 33–38 (1981)CrossRefGoogle Scholar
  36. 36.
    Aeppli, C., Carmichael, C.A., Nelson, R.K., Lemkau, K.L., Graham, W.M., Redmond, M.C., Valentine, D.L., Reddy, C.M.: Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ. Sci. Technol. 46, 8799–8807 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Short, J.W., Irvine, G.V., Mann, D.H., Maselko, J.M., Pella, J.J., Lindeberg, M.R., Payne, J.R., Driskell, W.B., Rice, S.D.: Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 years. Environ. Sci. Technol. 41, 1245–1250 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stenson, A.C., Marshall, A.G., Cooper, W.T.: Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 75, 1275–1284 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stenson, A.C., Landing, W.M., Marshall, A.G., Cooper, W.T.: Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 74, 4397–4409 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stenson, A.C., Ruddy, B.M., Bythell, B.J.: Ion molecule reaction H/D exchange as a probe for isomeric fractionation in chromatographically separated natural organic matter. Int. J. Mass Spectrom. 360, 45–53 (2014)CrossRefGoogle Scholar
  41. 41.
    Brown, T.A., Jackson, B.A., Bythell, B.J., Stenson, A.C.: Benefits of multidimensional fractionation for the study and characterization of natural organic matter. J. Chromatogr. A. 1470, 84–96 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bai, H., Jiang, W., Kotchey, G.P., Saidi, W.A., Bythell, B.J., Jarvis, J.M., Marshall, A.G., Robinson, R.A.S., Star, A.: Insight into the mechanism of graphene oxide degradation via the photo-Fenton reaction. J. Phys. Chem. C. 118, 10519–10529 (2014)CrossRefGoogle Scholar
  43. 43.
    West, B., Sit, A., Mohamed, S., Joblin, C., Blanchet, V., Bodi, A., Mayer, P.M.: Dissociation of the anthracene radical cation: a comparative look at iPEPICO and collision-induced dissociation mass spectrometry results. J. Phys. Chem. A. 118, 9870–9878 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mayer, P.M., Blanchet, V., Joblin, C.: Threshold photoelectron study of naphthalene, anthracene, pyrene, 1,2-dihydronaphthalene, and 9,10-dihydroanthracene. J. Chem. Phys. 134, 244312 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Johansson, H.A.B., Zettergren, H., Holm, A.I.S., Haag, N., Nielsen, S.B., Wyer, J.A., Kirketerp, M.-B.S., Støchkel, K., Hvelplund, P., Schmidt, H.T., Cederquist, H.: Unimolecular dissociation of anthracene and acridine cations: the importance of isomerization barriers for the C2H2 loss and HCN loss channels. J. Chem. Phys. 135, 084304 (2011).  https://doi.org/10.1063/1.3626792 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jarrell, T.M., Jin, C., Riedeman, J.S., Owen, B.C., Tan, X., Scherer, A., Tykwinski, R.R., Gray, M.R., Slater, P., Kenttämaa, H.I.: Elucidation of structural information achievable for asphaltenes via collision-activated dissociation of their molecular ions in MSn experiments: a model compound study. Fuel. 133, 106–114 (2014)CrossRefGoogle Scholar
  47. 47.
    Borton, D., Pinkston, D.S., Hurt, M.R., Tan, X., Azyat, K., Scherer, A., Tykwinski, R., Gray, M., Qian, K., Kenttämaa, H.I.: Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energy Fuel. 24, 5548–5559 (2010)CrossRefGoogle Scholar
  48. 48.
    Oomens, J., Sartakov, B.G., Meijer, G., von Helden, G.: Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int. J. Mass Spectrom. 254, 1–19 (2006)CrossRefGoogle Scholar
  49. 49.
    Oomens, J., Tielens, A.G.G.M., Sartakov, B.G., von Helden, G., Meijer, G.: Laboratory infrared spectroscopy of cationic polycyclic aromatic hydrocarbon molecules. Astrophys. J. 591, 968–985 (2003)CrossRefGoogle Scholar
  50. 50.
    Oomens, J., van Roij, A.J.A., Meijer, G., von Helden, G.: Gas-phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons. Astrophys. J. 542, 404–410 (2000)CrossRefGoogle Scholar
  51. 51.
    Oomens, J., Meijer, G., von Helden, G.: Gas phase infrared spectroscopy of cationic indane, acenaphthene, fluorene, and fluoranthene. J. Phys. Chem. A. 105, 8302–8309 (2001)CrossRefGoogle Scholar
  52. 52.
    Carpenter, J.E., McNary, C.P., Furin, A., Sweeney, A.F., Armentrout, P.B.: How hot are your ions really? A threshold collision-induced dissociation study of substituted benzylpyridinium “thermometer” ions. J. Am. Soc. Mass Spectrom. 28, 1876–1888 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zins, E.-L., Pepe, C., Schröder, D.: Energy-dependent dissociation of benzylpyridinium ions in an ion-trap mass spectrometer. J. Mass Spectrom. 45, 1253–1260 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Morsa, D., Gabelica, V., Rosu, F., Oomens, J., De Pauw, E.: Dissociation pathways of benzylpyridinium “thermometer” ions depend on the activation regime: an IRMPD spectroscopy study. J. Phys. Chem. Lett. 5, 3787–3791 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gatineau, D., Memboeuf, A., Milet, A., Cole, R.B., Dossmann, H., Gimbert, Y., Lesage, D.: Experimental bond dissociation energies of benzylpyridinium thermometer ions determined by threshold-CID and RRKM modeling. Int. J. Mass Spectrom. 417, 69–75 (2017)CrossRefGoogle Scholar
  56. 56.
    Milasinovic, S., Cui, Y., Gordon, R.J., Hanley, L.: Internal energy of thermometer ions formed by femtosecond laser desorption: implications for mass spectrometric imaging. J. Phys. Chem. C. 118, 28938–28947 (2014)CrossRefGoogle Scholar
  57. 57.
    Barylyuk, K.V., Chingin, K., Balabin, R.M., Zenobi, R.: Fragmentation of benzylpyridinium “thermometer” ions and its effect on the accuracy of internal energy calibration. J. Am. Soc. Mass Spectrom. 21, 172–177 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Derwa, F., de Pauw, E., Natalis, P.: New basis for a method for the estimation fo seconary ion internal energy distribution in ‘soft’ ionization techniques. Org. Mass Spectrom. 26, 117–118 (1991)CrossRefGoogle Scholar
  59. 59.
    Flanigan, P.M., Shi, F., Perez, J.J., Karki, S., Pfeiffer, C., Schafmeister, C., Levis, R.J.: Determination of internal energy distributions of laser electrospray mass spectrometry using thermometer ions and other biomolecules. J. Am. Soc. Mass Spectrom. 25, 1572–1582 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Greisch, J.-F., Gabelica, V., Remacle, F., Pauw, E.D.: Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Rapid Commun. Mass Spectrom. 17, 1847–1854 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Collette, C., Drahos, L., Pauw, E.D., Vékey, K.: Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun. Mass Spectrom. 12, 1673–1678 (1998)CrossRefGoogle Scholar
  62. 62.
    Gabelica, V., Pauw, E.D.: Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24, 566–587 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vala, M., Oomens, J., Berden, G.: Structure and dissociation pathways of protonated tetralin (1,2,3,4-tetrahydronaphthalene). J. Phys. Chem. A. 121, 4606–4612 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Walker, S.W.C., Mark, A., Verbuyst, B., Bogdanov, B., Campbell, J.L., Hopkins, W.S.: Characterizing the tautomers of protonated aniline using differential mobility spectrometry and mass spectrometry. J. Phys. Chem. A. 122, 3858–3865 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bythell, B.J., Corilo, Y., Lobodin, V.V., Rodgers, R.P., Marshall, A.G.: Model Compound Fragmentation Pathways as an Entry to Structural Analysis of Crude Oil. American Society of Mass Spectrometry Conference, Minneapolis (2013)Google Scholar
  66. 66.
    Bythell, B.J., Corilo, Y., Jarvis, J.M., Lobodin, V.V., Rodgers, R.P., Marshall, A.G.: Analysis of Crude Oil MS/MS Fragmentation Patterns. 9th North American FT MS Conference, Key West, FL (2013)Google Scholar
  67. 67.
    Wilcke, W.: Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma. 141, 157–166 (2007)CrossRefGoogle Scholar
  68. 68.
    Culotta, L., Gianguzza, A., Mannino, M.R., Orecchio, S.: Polycyclic aromatic hydrocarbons (pah) in Vulcano Island (aeolian archipelago) mud utilized for therapeutic purpose. Polycycl. Aromat. Compd. 27, 281–294 (2007)CrossRefGoogle Scholar
  69. 69.
    Lima, A.L.C., Farrington, J.W., Reddy, C.M.: Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensic. 6, 109–131 (2005)CrossRefGoogle Scholar
  70. 70.
    St-Amand, A.D., Mayer, P.M., Blais, J.M.: Modeling PAH uptake by vegetation from the air using field measurements. Atmos. Environ. 43, 4283–4288 (2009)CrossRefGoogle Scholar
  71. 71.
    Tielens, A.G.G.M.: Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008)CrossRefGoogle Scholar
  72. 72.
    Tabet, J.C., Fraisse, D.: Reaction of cyclohexanone with [NH4]+ under chemical ionization conditions. 1—formation of protonated unsubstituted imines. Org. Mass Spectrom. 16, 45–47 (1981)CrossRefGoogle Scholar
  73. 73.
    Benassi, M., Garcia-Reyes, J.F., Spengler, B.: Ambient ion/molecule reactions in low-temperature plasmas (LTP): reactive LTP mass spectrometry. Rapid Commun. Mass Spectrom. 27, 795–804 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bythell, B.J., Maître, P., Paizs, B.: Cyclization and rearrangement reactions of an fragment ions of protonated peptides. J. Am. Chem. Soc. 132, 14766–14779 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bythell, B.J., Hernandez, O., Steinmetz, V., Paizs, B., Maître, P.: Tyrosine side-chain catalyzed proton transfer in the YG a2 ion revealed by theory and IR spectroscopy in the ‘fingerprint’ and XH (X=C, N, O) stretching regions. Int. J. Mass Spectrom. 316–318, 227–234 (2012)CrossRefGoogle Scholar
  76. 76.
    Paizs, B., Suhai, S.: Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. I. Cis-trans isomerization around protonated amide bonds. Rapid Commun. Mass Spectrom. 15, 2307–2323 (2001)CrossRefGoogle Scholar
  77. 77.
    Kullman, M.J., Molesworth, S., Berden, G., Oomens, J., Van Stipdonk, M.: IRMPD spectroscopy b2 ions from protonated tripeptides with 4-aminomethyl benzoic acid residues. Int. J. Mass Spectrom. 316–318, 174–181 (2012)CrossRefGoogle Scholar
  78. 78.
    Zhao, J., Lau, J.K.-C., Grzetic, J., Verkerk, U.H., Oomens, J., Siu, K.W.M., Hopkinson, A.C.: Structures of an* ions derived from protonated pentaglycine and pentaalanine: results from IRMPD spectroscopy and DFT calculations. J. Am. Soc. Mass Spectrom. 24, 1957–1968 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Butler, M., Siu, K.W.M., Hopkinson, A.C.: Transnitrosylation products of the dipeptide cysteinyl–cysteine: an examination by tandem mass spectrometry and density functional theory. Phys. Chem. Chem. Phys. 18, 6047–6052 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhang, D., Gill, L.A., Cooks, R.G.: Deamination of protonated amines to yield protonated imines. J. Am. Soc. Mass Spectrom. 9, 1146–1157 (1998)CrossRefGoogle Scholar
  81. 81.
    Bythell, B.J., Csonka, I.P., Suhai, S., Barofsky, D.F., Paizs, B.: Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. J. Phys. Chem. B. 114, 15092–15105 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bouchoux, G., Choret, N., Berruyer-Penaud, F., Flammang, R.: Thermochemistry and unimolecular reactivity of protonated α,ω-aminoalcohols in the gas phase. Int. J. Mass Spectrom. 217, 195–230 (2002)CrossRefGoogle Scholar
  83. 83.
    Abutokaikah, M.T., Guan, S., Bythell, B.J.: Stereochemical sequence ion selectivity: proline versus pipecolic-acid-containing protonated peptides. J. Am. Soc. Mass Spectrom. 28, 182–189 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Nelson, C.R., Abutokaikah, M.T., Harrison, A.G., Bythell, B.J.: Proton mobility in b2 ion formation and fragmentation reactions of histidine-containing peptides. J. Am. Soc. Mass Spectrom. 27, 487–497 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Abutokaikah, M., Frye, J., Stump, C., Gnawali, G., Spilling, C.D., Bythell, B.J.: Aromatic core formation and side chain losses from series of isomeric model compounds of petroleum: energetics and practical applications. American Society of Mass Spectrometry Conference, San Diego (2018)Google Scholar
  86. 86.
    Jarrahpour, A., Nazari, M., Jalbout, A.F.: Synthesis and physical characterization of 4-(anthracen-10-yl)-1-cyclohexyl-3-phenoxyazetidin-2-one as a new trans 2-azetidinone. Molbank. 2007, M538 (2007)CrossRefGoogle Scholar
  87. 87.
    Ghosh, K., Masanta, G., Chattopadhyay, A.P.: Anthracene labeled pyridine amides: a class of prototype PET sensors towards monocarboxylic acid. J. Photochem. Photobiol. A Chem. 203, 40–49 (2009)CrossRefGoogle Scholar
  88. 88.
    Frisch, M.J.: Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford (2010)Google Scholar
  89. 89.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120, 215 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Maha T. Abutokaikah
    • 1
  • Giri R. Gnawali
    • 1
  • Joseph W. Frye
    • 1
  • Curtis M. Stump
    • 1
  • John Tschampel
    • 1
  • Matthew J. Murphy
    • 1
  • Eli S. Lachance
    • 1
  • Shanshan Guan
    • 1
  • Christopher D. Spilling
    • 1
  • Benjamin J. Bythell
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of MissouriSt. LouisUSA

Personalised recommendations