Advertisement

Self-Supplied Liquid Injection Field Desorption/Ionization Ion Source for an Orthogonal Time-of-Flight Instrument

  • Mathias H. Linden
  • H. Bernhard Linden
  • Norbert Nieth
  • Jürgen H. GrossEmail author
Research Article

Abstract

A new implementation of a dedicated ion source for field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) for the JEOL AccuTOF GC series of orthogonal-acceleration time-of-flight instruments is presented. In contrast to existing implementations, this third-party LIFDI probe and source combination does not require the exchange of the entire ion source comprising ion source block and lens stack to switch from electron ionization (EI) to LIFDI. Rather, the methods may be swapped conveniently by only exchanging the ion source block for a mechanical probe guide and inserting the LIFDI probe in place of the standard direct insertion probe (DIP) via the vacuum lock. Further, this LIFDI setup does not require any changes of the electronics or software of the AccuTOF mass spectrometer because it is self-supplied in terms of power supply, observation optics, and computer control. The setup offers advanced FI/FD/LIFDI control features such as emission-controlled emitter heating current and emitter flash baking during elongated runs as required for gas chromatography-FI-mass spectrometry (MS). The LIFDI source and probe and its operation are reported in detail. FI spectra of the volatile analytes toluene, heptane, and pentafluoroiodobenzene are presented. LIFDI operation is demonstrated for the analysis of the saturated hydrocarbon dotriacontane and the low-mass hydrocarbon polymers polystyrene 484 and polystyrene 1050. Further, the air-sensitive 2nd-generation Hoveyda–Grubbs catalyst is analyzed by LIFDI-MS. For comparison with long-established LIFDI instrumentation, some of the spectra obtained with the new setup are also compared with those from a double-focusing magnetic sector instrument.

Keywords

Field ionization (FI) Field desorption (FD) Liquid injection field desorption ionization (LIFDI) Orthogonal time-of-flight analyzer Magnetic sector analyzer Alkanes Polystyrene Hoveyda–Grubbs II catalyst 

Notes

Acknowledgements

We are indebted to Dr. Uwe Linne and Jan Bamberger (Philipps-Universität Marburg) for support during the process of development by measuring samples on their AccuTOF for comparison. A gift of polystyrene standards PS 484 and PS 1050 from Dr. Steffen Weidner (Federal Institute for Materials Research and Testing, Berlin) is gratefully acknowledged.

Supplementary material

13361_2019_2297_MOESM1_ESM.pdf (7.6 mb)
ESM 1 (PDF 7781 kb)

References

  1. 1.
    Müller, E.W.: Feldemission. Ergebn. exakt. Naturw. 27, 290–360 (1953)Google Scholar
  2. 2.
    Gomer, R., Inghram, M.G.: Applications of field ionization to mass spectrometry. J. Am. Chem. Soc. 77, 500–500 (1955)CrossRefGoogle Scholar
  3. 3.
    Inghram, M.G., Gomer, R.: Mass-spectrometric analysis of ions from the field microscope. J. Chem. Phys. 22, 1279–1280 (1954)CrossRefGoogle Scholar
  4. 4.
    Inghram, M.G., Gomer, R.: Mass-spectrometric investigation of the field emission of positive ions. Z. Naturforsch. A. 10, 863–872 (1955)CrossRefGoogle Scholar
  5. 5.
    Beckey, H.D.: Mass spectrographic investigations, using a field emission ion source. Z. Naturforsch. A. 14, 712–721 (1959)CrossRefGoogle Scholar
  6. 6.
    Beckey, H.D.: Field-ionization mass spectra of organic molecules. Normal C1 to C9 paraffins. Z. Naturforsch. A. 17, 1103–1111 (1962)CrossRefGoogle Scholar
  7. 7.
    Beckey, H.D., Wagner, G.: Field ionization mass spectra of organic molecules. II. Amines. Z. Naturforsch. A. 20, 169–175 (1965)Google Scholar
  8. 8.
    Beckey, H.D.: Analysis of solid organic natural products by field ionization mass spectrometry. Fresenius Z. Anal. Chem. 207, 99–104 (1965)CrossRefGoogle Scholar
  9. 9.
    Beckey, H.D.: Field desorption mass spectrometry: a technique for the study of thermally unstable substances of low volatility. Int. J. Mass Spectrom. Ion Phys. 2, 500–503 (1969)CrossRefGoogle Scholar
  10. 10.
    Beckey, H.D., Heindrichs, A., Winkler, H.U.: New field desorption techniques. Int. J. Mass Spectrom. Ion Phys. 3, A9–A11 (1970)CrossRefGoogle Scholar
  11. 11.
    Beckey, H.D., Hilt, E., Schulten, H.-R.: High temperature activation of emitters for field ionization and field desorption spectrometry. J. Phys. E: Sci. Instrum. 6, 1043–1044 (1973)CrossRefGoogle Scholar
  12. 12.
    Linden, H.B., Hilt, E., Beckey, H.D.: High-rate growth of dendrites on thin wire anodes for field desorption mass spectrometry. J. Phys. E: Sci. Instrum. 11, 1033–1036 (1978)CrossRefGoogle Scholar
  13. 13.
    Linden, H.B., Beckey, H.D., Okuyama, F.: On the mechanism of cathodic growth of tungsten needles by decomposition of hexacarbonyltungsten under high-field conditions. Appl. Phys. 22, 83–87 (1980)CrossRefGoogle Scholar
  14. 14.
    Rabrenovic, M., Ast, T., Kramer, V.: Alternative organic substances for generation of carbon emitters for field desorption mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 37, 297–307 (1981)CrossRefGoogle Scholar
  15. 15.
    Schulten, H.-R., Lehmann, W.D.: High-resolution field desorption mass spectrometry. Part VII. Explosives and explosive mixtures. Anal. Chim. Acta. 93, 19–31 (1977)CrossRefGoogle Scholar
  16. 16.
    Schulten, H.-R.: Recent advances in field desorption mass spectrometry. Adv. Mass Spectrom. 7A, 83–97 (1978)Google Scholar
  17. 17.
    Giessmann, U., Röllgen, F.W.: Electrodynamic effects in field desorption mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 38, 267–279 (1981)CrossRefGoogle Scholar
  18. 18.
    Wong, S.S., Giessmann, U., Karas, M., Röllgen, F.W.: Field desorption of sucrose studied by combined optical microscopy and mass spectrometry. Int. J. Mass Spectrom. Ion Process. 56, 139–150 (1984)CrossRefGoogle Scholar
  19. 19.
    Davis, S.C., Natoli, V., Neumann, G.M., Derrick, P.J.: A model of ion evaporation tested through field desorption experiments on glucose mixed with alkali metal salts. Int. J. Mass Spectrom. Ion Process. 78, 17–35 (1987)CrossRefGoogle Scholar
  20. 20.
    Beckey, H.D.: Pergamon. Elmsford. (1971)Google Scholar
  21. 21.
    Sammons, M.C., Bursey, M.M., White, C.K.: Field desorption mass spectrometry of onium salts. Anal. Chem. 47, 1165–1166 (1975)CrossRefGoogle Scholar
  22. 22.
    Beckey, H.D., Schulten, H.-R.: Field desorption mass spectrometry. Angew. Chem. Int. Ed. 14, 403–415 (1975)CrossRefGoogle Scholar
  23. 23.
    Beckey, H.D. Pergamon Press, Oxford (1977)Google Scholar
  24. 24.
    Wood, G.W.: Field desorption mass spectrometry: applications. Mass Spectrom. Rev. 1, 63–102 (1982)CrossRefGoogle Scholar
  25. 25.
    Reynolds, W.D.: Field desorption mass spectrometry. Anal. Chem. 51, 283A–293A (1979)CrossRefGoogle Scholar
  26. 26.
    Schulten, H.-R.: Ion formation from organic solids: analytical applications of field desorption mass spectrometry. In: Benninghoven A (ed.). Springer-Verlag, Heidelberg, (1983)Google Scholar
  27. 27.
    Lattimer, R.P., Schulten, H.-R.: Field desorption of hydrocarbon polymers. Int. J. Mass Spectrom. Ion Phys. 52, 105–116 (1983)CrossRefGoogle Scholar
  28. 28.
    Lattimer, R.P., Schulten, H.-R.: Field ionization and field desorption mass spectrometry: past, present, and future. Anal. Chem. 61, 1201A–1215A (1989)CrossRefGoogle Scholar
  29. 29.
    Prókai, L. Marcel Dekker, N. Y. (1990)Google Scholar
  30. 30.
    Evans, W.J., DeCoster, D.M., Greaves, J.: Evaluation of field desorption mass spectrometry for the analysis of polyethylene. J. Am. Soc. Mass Spectrom. 7, 1070–1074 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gross, J.H., Weidner, S.M.: Influence of electric field strength and emitter temperature on dehydrogenation and C-C cleavage in field desorption mass spectrometry of polyethylene oligomers. Eur. J. Mass Spectrom. 6, 11–17 (2000)CrossRefGoogle Scholar
  32. 32.
    Gross, J.H., Vékey, K., Dallos, A.: Field desorption mass spectrometry of large multiply branched saturated hydrocarbons. J. Mass Spectrom. 36, 522–528 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lattimer, R.P.: Field ionization (FI-MS) and field desorption (FD-MS). In: Montaudo G, Lattimer RP (eds.). CRC Press, Boca Raton, (2001)Google Scholar
  34. 34.
    Gross, J.H.: Liquid injection field desorption/ionization mass spectrometry of ionic liquids. J. Am. Soc. Mass Spectrom. 18, 2254–2262 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gross, J.H.: Molecular ions of ionic liquids in the gas phase. J. Am. Soc. Mass Spectrom. 19, 1347–1352 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Linden, H.B.: Liquid injection field desorption ionization: a new tool for soft ionization of samples including air-sensitive catalysts and non-polar hydrocarbons. Eur. J. Mass Spectrom. 10, 459–468 (2004)CrossRefGoogle Scholar
  37. 37.
    Gross, J.H., Nieth, N., Linden, H.B., Blumbach, U., Richter, F.J., Tauchert, M.E., Tompers, R., Hofmann, P.: Liquid injection field desorption/ionization of reactive transition metal complexes. Anal. Bioanal. Chem. 386, 52–58 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Monillas, W.H., Yap, G.P.H., Theopold, K.H.: A tale of two isomers: a stable phenyl hydride and a high-spin (S = 3) benzene complex of chromium. Angew. Chem. Int. Ed. 46, 6692–6694 (2007)CrossRefGoogle Scholar
  39. 39.
    Dransfield, T.A., Nazir, R., Perutz, R.N., Whitwood, A.C.: Liquid injection field desorption/ionization of transition metal fluoride complexes. J. Fluor. Chem. 131, 1213–1217 (2010)CrossRefGoogle Scholar
  40. 40.
    Breunig, H.J., Linden, H.B., Moldovan, O.: Liquid injection field desorption ionization mass spectrometry of cyclic metal carbonyl complexes with tetra-antimony ligands. J. Am. Soc. Mass Spectrom. 24, 164–166 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Molon, M., Dilchert, K., Gemel, C., Seidel, R.W., Schaumann, J., Fischer, R.A.: Clusters [Ma(GaCp*)b(CNR)c] (M = Ni, Pd, Pt): synthesis, structure, and Ga/Zn exchange reactions. Inorg. Chem. 52, 14275–14283 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Molon, M., Gemel, C., Fischer, R.A.: Organogallium- and organozinc-rich palladium and platinum clusters. Dalton Trans. 43, 3114–3120 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Freitag, K., Gemel, C., Jerabek, P., Oppel, M.I., Seidel, R.W., Frenking, G., Banh, H., Dilchert, K., Fischer, R.A.: The σ-aromatic clusters [Zn3]+ and [Zn2Cu]: embryonic brass. Angew. Chem. Int. Ed. 54, 4370–4374 (2015)CrossRefGoogle Scholar
  44. 44.
    Rinn, N., Berndt, J.-P., Kreher, A., Hrdina, R., Reinmuth, M., Schreiner, P.R., Dehnen, S.: Peptide-functionalized organotin sulfide clusters. Organometallics. 35, 3215–3220 (2016)CrossRefGoogle Scholar
  45. 45.
    Hornung, J., Wessing, J., Molon, M., Dilchert, K., Gemel, C., Fischer, R.A.: Chemistry of Hume-Rothery inspired organometallics: selective functionalization of [M(ZnCp*)4(ZnCH3)4] (M = Ni, Pd, Pt) with terminal alkynes to yield [M(ZnCp*)4(ZnCCSiiPr)4]. J. Organomet. Chem. 860, 78–84 (2018)CrossRefGoogle Scholar
  46. 46.
    Hoidn, C.M., Leitl, J., Ziegler, C.G.P., Shenderovich, I.G., Wolf, R.: Halide-substituted phosphacyclohexadienyl iron complexes: covalent structures vs. ion pairs. Eur. J. Inorg. Chem. 2019, 1567–1574 (2019)CrossRefGoogle Scholar
  47. 47.
    Heitkemper, T., Sindlinger, C.P.: Electronic push–pull modulation by peripheral substituents in pentaaryl boroles. Chem. Eur. J. 25, 6628–6637 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kuehn, L., Jammal, D.G., Lubitz, K., Marder, T.B., Radius, U.: Stoichiometric and catalytic Aryl−Cl activation and borylation using NHC-stabilized nickel(0) complexes. Chem. Eur. J. 0, (2019)Google Scholar
  49. 49.
    Meier, M., Ji, L., Nitsch, J., Krummenacher, I., Deißenberger, A., Auerhammer, D., Schäfer, M., Marder, T.B., Braunschweig, H.: Preparation and characterization of a π-conjugated donor–acceptor system containing the strongly electron-accepting tetraphenylborolyl unit. Chem. Eur. J. 25, 4707–4712 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schaub, T.M., Linden, H.B., Hendrickson, C.L., Marshall, A.G.: Continuous-flow sample introduction for field desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1641–1644 (2004)CrossRefGoogle Scholar
  51. 51.
    Smith, D.F., Schaub, T.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Automated liquid injection field desorption/ionization for Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 80, 7379–7382 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Briker, Y., Ring, Z., Iacchelli, A., McLean, N., Rahimi, P.M., Fairbridge, C., Malhotra, R., Coggiola, M.A., Young, S.E.: Diesel fuel analysis by GC-FIMS: aromatics, n-paraffins, and isoparaffins. Energy Fuel. 15, 23–37 (2001)CrossRefGoogle Scholar
  53. 53.
    Qian, K., Dechert, G.J.: Recent advances in petroleum characterization by GC field ionization time-of-flight high-resolution mass spectrometry. Anal. Chem. 74, 3977–3983 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Qian, K., Dechert, G.J., Edwards, K.E.: Deducing molecular compositions of petroleum products using GC-field ionization high resolution time of flight mass spectrometry. Int. J. Mass Spectrom. 265, 230–236 (2007)CrossRefGoogle Scholar
  55. 55.
    Matsuo, T., Matsuda, H., Katakuse, I.: Use of field desorption mass spectra of polystyrene and polypropylene glycol as mass references up to mass 10000. Anal. Chem. 51, 1329–1331 (1979)CrossRefGoogle Scholar
  56. 56.
    Linden, H.B., Gross, J.H.: Reduced fragmentation in liquid injection field desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry by use of helium for the thermalization of molecular ions. Rapid Commun. Mass Spectrom. 26, 336–344 (2012)CrossRefGoogle Scholar
  57. 57.
    Hejazi, L., Ebrahimi, D., Hibbert, D.B., Guilhaus, M.: Compatibility of electron ionization and soft ionization methods in gas chromatography/orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 2181–2189 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Röllgen, F.W., Beckey, H.D.: Surface reactions induced by field ionization of organic molecules. Surf. Sci. 23, 69–87 (1970)CrossRefGoogle Scholar
  59. 59.
    Schulten, H.-R., Beckey, H.D.: Criteria for distinguishing between M+. and [M+H]+ ions in field desorption mass spectra. Org. Mass Spectrom. 9, 1154–1155 (1974)CrossRefGoogle Scholar
  60. 60.
    Linden, H.B., Gross, J.H.: A liquid injection field desorption/ionization-electrospray ionization combination source for a Fourier transform ion cyclotron resonance mass spectrometer. J. Am. Soc. Mass Spectrom. 22, 2137–2144 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
  62. 62.
    Monitoring rotary vacuum pump oil degradation by using field desorption (FD)-TOFMS and group-type analysis software, MS Tips 98, JEOL USA, https://www.jeolusa.com/DesktopModules/Bring2mind/DMX/API/Entries/Download?EntryId=652&Command=Core_Download&language=en-US&PortalId=2&TabId=337,
  63. 63.
    Siegler, F., Wolff, J.J., Gross, J.H.: Analysis of ferrocenyl compounds by LR and HR field desorption mass spectrometry. Adv. Mass Spectrom. 14, B083140/083141–B083140/083121 (1998)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Linden CMSWeyheGermany
  2. 2.Institute of Organic ChemistryHeidelberg UniversityHeidelbergGermany

Personalised recommendations