Advertisement

Perspectives on Data Analysis in Metabolomics: Points of Agreement and Disagreement from the 2018 ASMS Fall Workshop

  • Erin S. BakerEmail author
  • Gary J. PattiEmail author
Critical Insight

Abstract

In November 2018, the American Society for Mass Spectrometry hosted the Annual Fall Workshop on informatic methods in metabolomics. The Workshop included sixteen lectures presented by twelve invited speakers. The focus of the talks was untargeted metabolomics performed with liquid chromatography/mass spectrometry. In this review, we highlight five recurring topics that were covered by multiple presenters: (i) data sharing, (ii) artifacts and contaminants, (iii) feature degeneracy, (iv) database organization, and (v) requirements for metabolite identification. Our objective here is to present viewpoints that were widely shared among participants, as well as those in which varying opinions were articulated. We note that most of the presenting speakers employed different data processing software, which underscores the diversity of informatic programs currently being used in metabolomics. We conclude with our thoughts on the potential role of reference datasets as a step towards standardizing data processing methods in metabolomics.

Keywords

Metabolomics Informatics ASMS Fall Workshop Metabolism 

References

  1. 1.
    Cho, K., Mahieu, N.G., Johnson, S.L., Patti, G.J.: After the feature presentation: technologies bridging untargeted metabolomics and biology. Curr. Opin. Biotechnol. 28, 143–148 (2014)CrossRefGoogle Scholar
  2. 2.
    Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., Edison, A., Fiehn, O., Higashi, R., Nair, K.S., Sumner, S., Subramaniam, S.: Metabolomics workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44(D1), D463–470 (2016)Google Scholar
  3. 3.
    Johnson, C.H., Ivanisevic, J., Benton, H.P., Siuzdak, G.: Bioinformatics: the next frontier of metabolomics. Anal. Chem. 87(1), 147–156 (2015)CrossRefGoogle Scholar
  4. 4.
    Mahieu, N.G., Genenbacher, J.L., Patti, G.J.: A roadmap for the XCMS family of software solutions in metabolomics. Curr. Opin. Chem. Biol. 30, 87–93 (2016)CrossRefGoogle Scholar
  5. 5.
    Blazenovic, I., Kind, T., Ji, J., Fiehn, O.: Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 8(2), (2018)Google Scholar
  6. 6.
    Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G.J., Siuzdak, G.: An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30(9), 826–828 (2012)CrossRefGoogle Scholar
  7. 7.
    Mailman, M.D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., Phan, L., Popova, N., Pretel, S., Ziyabari, L., Lee, M., Shao, Y., Wang, Z.Y., Sirotkin, K., Ward, M., Kholodov, M., Zbicz, K., Beck, J., Kimelman, M., Shevelev, S., Preuss, D., Yaschenko, E., Graeff, A., Ostell, J., Sherry, S.T.: The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39(10), 1181–1186 (2007)CrossRefGoogle Scholar
  8. 8.
    Kale, N.S., Haug, K., Conesa, P., Jayseelan, K., Moreno, P., Rocca-Serra, P., Nainala, V.C., Spicer, R.A., Williams, M., Li, X., Salek, R.M., Griffin, J.L., Steinbeck, C.: MetaboLights: an open-access database repository for metabolomics data. Curr. Protoc. Bioinformatics. 53, 14 13 1–14 1318 (2016)Google Scholar
  9. 9.
    Mahieu, N.G., Patti, G.J.: Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal. Chem. 89(19), 10397–10406 (2017)CrossRefGoogle Scholar
  10. 10.
    Mahieu, N.G., Huang, X., Chen, Y.J., Patti, G.J.: Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal. Chem. 86(19), 9583–9589 (2014)CrossRefGoogle Scholar
  11. 11.
    Patterson, R.E., Kirpich, A.K., Koelmel, J.P., Kalavalapalli, S., Morse, A.M., Cusi, K., Sunny, N.E., McIntyre, L.M., Garrett, T.J., Yost, R.A.: Improved experimental data processing for UHPLC-HRMS/MS lipidomics applied to fatty liver disease. Metabolomics. 13, 142 (2017)CrossRefGoogle Scholar
  12. 12.
    Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T.R., Neumann, S.: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84(1), 283–289 (2012)CrossRefGoogle Scholar
  13. 13.
    Broeckling, C.D., Afsar, F.A., Neumann, S., Ben-Hur, A., Prenni, J.E.: RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 86(14), 6812–6817 (2014)CrossRefGoogle Scholar
  14. 14.
    DeFelice, B.C., Mehta, S.S., Samra, S., Cajka, T., Wancewicz, B., Fahrmann, J.F., Fiehn, O.: Mass spectral feature list optimizer (MS-FLO): a tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing. Anal. Chem. 89(6), 3250–3255 (2017)CrossRefGoogle Scholar
  15. 15.
    Mahieu, N.G., Spalding, J.L., Gelman, S.J., Patti, G.J.: Defining and detecting complex peak relationships in mass spectral data: the Mz.Unity algorithm. Anal. Chem. 88(18), 9037–9046 (2016)CrossRefGoogle Scholar
  16. 16.
    Tautenhahn, R., Böttcher, C., Neumann, S.: In Annotation of LC/ESI-MS mass signals, pp. 371–380. Springer, Berlin, Heidelberg (2007)Google Scholar
  17. 17.
    Smith, C.A., O’Maille, G., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R., Custodio, D.E., Abagyan, R., Siuzdak, G.: METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27(6), 747–751 (2005)CrossRefGoogle Scholar
  18. 18.
    Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A.V., Meehan, M.J., Liu, W.T., Crusemann, M., Boudreau, P.D., Esquenazi, E., Sandoval-Calderon, M., Kersten, R.D., Pace, L.A., Quinn, R.A., Duncan, K.R., Hsu, C.C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D., Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L., Liaw, C.C., Yang, Y.L., Humpf, H.U., Maansson, M., Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A.M., Sedio, B.E., Klitgaard, A., Larson, C.B., P, C.A.B., Torres-Mendoza, D., Gonzalez, D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute, E., O'Neill, E.C., Briand, E., Helfrich, E.J.N., Granatosky, E.A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti, P., McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki, M., Traxler, M.F., Engene, N., Koyama, N., Vining, O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P.G., Dai, J., Neupane, R., Gurr, J., Rodriguez, A.M.C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B.M., Almaliti, J., Allard, P.M., Phapale, P., Nothias, L.F., Alexandrov, T., Litaudon, M., Wolfender, J.L., Kyle, J.E., Metz, T.O., Peryea, T., Nguyen, D.T., VanLeer, D., Shinn, P., Jadhav, A., Muller, R., Waters, K.M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P.R., Palsson, B.O., Pogliano, K., Linington, R.G., Gutierrez, M., Lopes, N.P., Gerwick, W.H., Moore, B.S., Dorrestein, P.C., Bandeira, N.: Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 34(8), 828–837 (2016)CrossRefGoogle Scholar
  19. 19.
    Nakamura, K., Shimura, N., Otabe, Y., Hirai-Morita, A., Nakamura, Y., Ono, N., Ul-Amin, M.A., Kanaya, S.: KNApSAcK-3D: a three-dimensional structure database of plant metabolites. Plant Cell Physiol. 54(2), e4 (2013)CrossRefGoogle Scholar
  20. 20.
    Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017)CrossRefGoogle Scholar
  21. 21.
    Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Midford, P.E., Ong, Q., Ong, W.K., Paley, S., Subhraveti, P., Karp, P.D.: The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46(D1), D633–D639 (2018)CrossRefGoogle Scholar
  22. 22.
    Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., Hollender, J.: Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 48(4), 2097–2098 (2014)CrossRefGoogle Scholar
  23. 23.
    Creek, D.J., Dunn, W.B., Fiehn, O., Griffin, J.L., Hall, R.D., Lei, Z., Mistrik, R., Neumann, S., Schymanski, E.L., Sumner, L.W., Trengove, R., Wolfender, J.-L.: Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics. 10(3), 350–353 (2014)CrossRefGoogle Scholar
  24. 24.
    Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W., Fiehn, O., Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, J.C., Marriott, P., Nicholls, A.W., Reily, M.D., Thaden, J.J., Viant, M.R.: Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 3(3), 211–221 (2007)CrossRefGoogle Scholar
  25. 25.
    Spicer, R., Salek, R.M., Moreno, P., Canueto, D., Steinbeck, C.: Navigating freely-available software tools for metabolomics analysis. Metabolomics. 13(9), 106 (2017)CrossRefGoogle Scholar
  26. 26.
    Myers, O.D., Sumner, S.J., Li, S., Barnes, S., Du, X.: Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data. Anal. Chem. 89(17), 8689–8695 (2017)CrossRefGoogle Scholar
  27. 27.
    Li, Z., Lu, Y., Guo, Y., Cao, H., Wang, Q., Shui, W.: Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection. Anal. Chim. Acta. 1029, 50–57 (2018)CrossRefGoogle Scholar
  28. 28.
    Rafiei, A., Sleno, L.: Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun. Mass Spectrom. 29(1), 119–127 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Departments of Chemistry and MedicineWashington University in St. LouisSt. LouisUSA

Personalised recommendations