Advertisement

Molecularly Imprinted Polymer-Coated Probe Electrospray Ionization Mass Spectrometry Determines Phorbol Esters and Deoxyphorbol Metabolites in Jatropha curcas Leaves

  • Lidya C. da Silva
  • Thays C. de Carvalho
  • Igor Pereira
  • Julio Cesar Marana
  • Bruno G. Laviola
  • Patricia V. Abdelnur
  • Boniek G. VazEmail author
Research Article

Abstract

In this study, a molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) method was developed for detection of phorbol esters (PEs) and deoxyphorbol metabolites in Jatropha curcas leaves. Such an approach was established by sticking on a metallic needle a molecularly imprinted polymer to particularly design a MIP-coated probe for selective sampling and ionization of PEs and deoxyphorbol metabolites. By a subsequent application of a high voltage and methanol, as spray solvent, ESI was generated for direct and rapid analysis under ambient and open-air conditions. MIP-coated probe exhibited a high sampling capacity of the PEs and its metabolites in methanolic extracts of J. curcas leaves compared with the non-imprinted polymer (NIP)-coated probe. MIPCPESI-MS allowed the detection of phorbol 12,13-diacetate (PDA) from J. curcas leaves with minimal sample preparation, and with detection limit and quantification reaching 0.28 μg/mL and 0.92 μg/mL, respectively. Also, good linearity was obtained with R2 > 0.99 and precision and accuracy values between 4.06–13.49% and − 1.60 to − 15.26%, respectively. The current method was successfully applied to screening methanolic extracts of six different J. curcas leaf genotypes (three toxic and three non-toxic). PDA and three PE deoxyphorbol metabolites were identified only from toxic genotypes, in which PDA was determined with concentration ranging from 222.19 ± 23.55 to 528.23 ± 19.72 μg/g. All these findings support that the MIPCPESI-MS method developed here has a high potential for the analysis of PEs in plant extracts enabling differentiation of toxic and non-toxic genotypes earlier in the leaves.

Keywords

Probe electrospray ionization (PESI) Molecularly imprinted polymer (MIP) Phorbol esters 

Notes

Acknowledgements

This work received institutional and financial support by CAPES, CNPq, and FAPEG.

Supplementary material

13361_2019_2269_MOESM1_ESM.docx (308 kb)
ESM 1 (DOCX 307 kb)

References

  1. 1.
    Nakao, M., Hasegawa, T., Yusuhara, T., Ishihara, Y.: Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor promoting activity. Ecotox. Environ. Safe. 114, 357–364 (2015)CrossRefGoogle Scholar
  2. 2.
    Hass, W., Sterk, H., Mittelbach, M.: Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J. Nat. Prod. 65, 1435–1440 (2002)Google Scholar
  3. 3.
    Devappa, R.K., Makkar, H.P.S., Becker, K.: Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenergy. 34, 1125–1133 (2010)CrossRefGoogle Scholar
  4. 4.
    Goel, G., Makkar, H.P.S., Francis, G., Becker, K.: Phorbol esters: structure, biological activity and toxicity in animals. Int. J. Toxicol. 26, 279–288 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Laviola, B.G., Teodoro, P.E., Peixoto, L.A., Bhering, L.L.: Parental selection in diallel crosses of Jatropha curcas using mixed models. Acta Sci. 40, 51–57 (2018)Google Scholar
  6. 6.
    Laviola, B.G., Alves, A.A., Rosado, T.B., Bhering, L.L., Formighieri, E.F., Peixoto, L.A.: Establishment of new strategies to quantify and increase the variability in the Brazilian Jatropha genotypes. Ind. Crop. Prod. 117, 216–233 (2018)CrossRefGoogle Scholar
  7. 7.
    Pereira, I., Carvalho, T.C., Romão, W., Filgueiras, P.R., Laviola, B.G., Rodrigues, C.M., Abdelnur, P.V., Vaz, B.G.: Differentiation of toxic and non-toxic leaves of Jatropha curcas L. genotypes by leaf spray mass spectrometry. J. Brz. Chem. Soc. 28, 1461–1466 (2017)Google Scholar
  8. 8.
    Baldini, M., Ferfuia, C., Bortolomezzi, R., Verardo, G., Pascali, J., Piasentier, E., Franceschi, L.: Determination of phorbol esters in seeds and leaves of Jatropha curcas and in animal tissue by high-performance liquid chromatography tandem mass spectrometry. Ind. Crop. Prod. 59, 268–276 (2014)CrossRefGoogle Scholar
  9. 9.
    Vogg, G., Achatz, S., Kettrup, A., Sandermann Jr., H.: Fast, sensitive and selective liquid chromatographic-tandem mass spectrometric determination of tumor-promoting diterpene esters. J. Chromatogr. A. 855, 563–573 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    Ma, X., Ouyang, Z.: Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TRAC. 85, 10–19 (2016)PubMedGoogle Scholar
  11. 11.
    Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.: Ambient mass spectrometry. Science. 311, 1566–1570 (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    Ouyang, Z., Zhang, X.: Ambient mass spectrometry. Analyst. 135, 659–660 (2010)PubMedCrossRefGoogle Scholar
  13. 13.
    Huang, M., Yuan, C., Cheng, S., Cho, S., Shie, J.: Ambient ionization mass spectrometry. Annu. Rev. Anal. Chem. 3, 43–65 (2010)CrossRefGoogle Scholar
  14. 14.
    Pereira, I., Rodrigues, M.F., Chaves, A.R., Vaz, B.G.: Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta. 178, 507–514 (2018)PubMedCrossRefGoogle Scholar
  15. 15.
    Liu, J., Wang, H., Cooks, R.G., Ouyang, Z.: Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry. Anal. Chem. 83, 7608–7613 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    Hiraoka, K., Nishidate, K., Mori, K., Asakawa, D., Suzuki, S.: Development of probe electrospray using a solid needle. Rapid Commun. Mass Spectrom. 21, 3139–3144 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    Usmanov, D.T., Mandal, M.K., Hiraoka, K., Ninomiya, S., Wada, H., Matsumura, M., Sanada-Morimura, S., Nonami, H., Yamabe, S.: Dipping probe electrospray ionization/mass spectrometry for direct on-site and low-invasive food analysis. Food Chem. 260, 53–60 (2018)PubMedCrossRefGoogle Scholar
  18. 18.
    Usui, K., Murata, T., Fujita, Y., Kamijo, Y., Hanazawa, T., Yoshizawa, T., Funayama, M.: Direct detection of the psychoactive substance MT-45 in human tissue samples by probe electrospray ionization-tandem mass spectrometry. Drug Test Anal. 10, 1033–1038 (2018)PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, J., Xia, B., Ji, B., Xiao, S., Ding, L., Zhou, Y.: Strategy to rapidly discriminate trace isomeric lignan compounds from Gymnotheca chinensis by probe electrospray ionization tandem mass spectrometry. Eur. J. Mass Spectrom. 21, 37–44 (2015)CrossRefGoogle Scholar
  20. 20.
    Zaitsu, K., Hayashi, Y., Murata, T., Ohara, T., Nakagiri, K., Kusano, M., Nakajima, H., Nakajima, T., Ishikawa, T., Tsuchihashi, H., Ishii, A.: Intact endogenous metabolite analysis of mice liver by probe electrospray ionization/triple quadrupole tandem mass spectrometry and its preliminary application to in vivo real-time analysis. Anal. Chem. 88, 3556–3561 (2016)PubMedCrossRefGoogle Scholar
  21. 21.
    Zaitsu, K., Hayashi, Y., Murata, T., Yokota, K., Ohara, T., Kusano, M., Tsuchihashi, H., Ishikawa, T., Ishii, A., Ogata, K., Tanihata, H.: In vivo real-time monitoring system using probe electrospray ionization/tandem mass spectrometry for metabolites in mouse brain. Anal. Chem. 90, 4695–4701 (2018)PubMedCrossRefGoogle Scholar
  22. 22.
    Gong, X., Zhao, Y., Cai, S., Fu, S., Yang, C., Zhang, S., Zhang, X.: Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal. Chem. 86, 3809–3816 (2014)PubMedCrossRefGoogle Scholar
  23. 23.
    Alberici, R.M., Simas, R.C., Sanvido, G.B., Romão, W., Lalli, P.M., Benassi, M., Cunha, I.B.S., Eberlin, M.N.: Ambient mass spectrometry: bringing MS into the “real world”. Anal. Bioanal. Chem. 398, 265–294 (2010)PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, L.C., Nishidate, K., Salto, Y., Mori, K., Asakawa, D., Takeda, S., Kubota, T., Hori, H., Hiraoka, K.: Characteristics of probe electrospray generated from a solid needle. J. Phys. Chem. B. 112, 11164–11170 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    Gómez-Ríos, G.A., Liu, C., Tascon, M., Reyes-Garcés, N., Arnold, D.W., Covey, T.R., Pawliszyn, J.: Open port probe sampling interface for the direct coupling of biocompatible solid-phase microextraction to atmospheric pressure ionization mass spectrometry. Anal. Chem. 89, 3805–3809 (2017)PubMedCrossRefGoogle Scholar
  26. 26.
    Deng, J., Yu, T., Yao, Y., Peng, Q., Luo, L., Chen, B., Wang, X., Yang, Y., Luan, T.: Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Anal. Chim. Acta. 954, 52–59 (2017)PubMedCrossRefGoogle Scholar
  27. 27.
    Tascon, M., Gomez-Rios, G.A., Reyes-Garces, N., Poole, J., Boyaci, E., Pawliszyn, J.: High-throughput screening and quantification of target compounds in biofluids by coated blade spray-mass spectrometry. Anal. Chem. 89, 8421–8428 (2017)PubMedCrossRefGoogle Scholar
  28. 28.
    Song, X., Chen, H., Zare, R.N.: Conductive polymer spray ionization mass spectrometry for biofluid analysis. Anal. Chem. 90, 12878–12885 (2018)PubMedCrossRefGoogle Scholar
  29. 29.
    Tavares, L.S., Carvalho, T.C., Romão, W., Vaz, B.G., Chaves, A.R.: Paper spray tandem mass spectrometry based on molecularly imprinted polymer substrate for cocaine analysis in oral fluid. J. Am. Soc. Mass Spectrom. 29, 566–572 (2018)PubMedCrossRefGoogle Scholar
  30. 30.
    Mendes, T.P.P., Pereira, I., Ferreira, M.R., Chaves, A.R., Vaz, B.G.: Molecularly imprinted polymer-coated paper as a substrate for highly sensitive analysis using paper spray mass spectrometry: quantification of metabolites in urine. Anal. Methods. 43, 6117–6123 (2017)CrossRefGoogle Scholar
  31. 31.
    Murray, A., Örmeci, B.: Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review. Environ. Sci. Pollut. Res. 19, 3820–3830 (2012)CrossRefGoogle Scholar
  32. 32.
    Salehi, S., Rasoull-Amini, S., Adib, N., Shekarchi, M.: Synthesis of molecular imprinted polymers for selective extraction of domperidone from human serum using high performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 1027, 165–173 (2016)CrossRefGoogle Scholar
  33. 33.
    Figueiredo, E.C., Sanvido, G.B., Arruda, M.A.Z., Eberlin, M.N.: Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization. Analyst. 135, 726–730 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    Huang, Y., Ma, Y., Hu, H., Guo, P., Miao, L., Yang, Y., Zhang, M.: Rapid and sensitive detection of trace malachite green and its metabolite in aquatic products using molecularly imprinted polymer-coated wooden-tip electrospray ionization mass spectrometry. RSC Adv. 7, 52091–52100 (2017)CrossRefGoogle Scholar
  35. 35.
    Biesen, G.V., Wiseman, J.M., Li, J., Bottaro, C.S.: Desorption electrospray ionization-mass spectrometry for the detection of analytes extracted by thin-film molecularly imprinted polymers. Analyst. 135, 2237–2240 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson, M., Ellison, S.L.R., Wood, R.: Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure App. Chem. 74, 835–855 (2002)CrossRefGoogle Scholar
  37. 37.
    Wang, H.-B., Wang, X.-Y., Liu, L.-P., Qin, G.-W., Kang, T.-G.: Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem. Rev. 115, 2975–3011 (2015)PubMedCrossRefGoogle Scholar
  38. 38.
    Appendino, G., Belloro, E., Tron, G.C., Jakupovic, J., Ballero, M.: Diterpenoids from Euphorbia pithyusa subsp. Cupanii. J. Nat. Prod. 62, 1399–1404 (1999)PubMedCrossRefGoogle Scholar
  39. 39.
    Cormack, P.A.G., Elorza, A.Z.: Molecularly imprinted polymers: synthesis and characterization. J. Chromatogr. B. 804, 173–182 (2004)CrossRefGoogle Scholar
  40. 40.
    Krupadam, R.J., Khan, M.S., Wate, S.R.: Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contamined water using molecularly imprinted polymer. Water Res. 44, 681–688 (2010)PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang, Z., Hu, J.: Effect of environmental factors on estrogenic compounds adsorption by MIP. Water Air Soil Pollut. 210, 255–264 (2010)CrossRefGoogle Scholar
  42. 42.
    Anene, A., Hosni, K., Chevalier, Y., Kalfat, R., Hbaieb, S.: Molecularly imprinted polymer for extraction of patulin in apple juice samples. Food Control. 70, 90–95 (2016)CrossRefGoogle Scholar
  43. 43.
    Capriotti, A.L., Cavaliere, C., Giansanti, P., Gubbiotti, R., Samperi, R., Laganà, A.: Recent developments in matrix solid-phase dispersion extraction. J. Chromatogr. A. 1271, 2521–2532 (2008)Google Scholar
  44. 44.
    Devappa, R.K., Bingham, J.P., Khanal, S.K.: High performance liquid chromatography method for rapid quantification of phorbol esters in Jatropha curcas seed. Ind. Crop. Prod. 49, 211–219 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry InstituteFederal University of GoiásGoiâniaBrazil
  2. 2.Embrapa AgroenergyBrazilian Agricultural Research CompanyBrasíliaBrazil

Personalised recommendations