Advertisement

Fragmentation Behavior and Gas-Phase Structures of Cationized Glycosphingolipids in Ozone-Induced Dissociation Mass Spectrometry

  • Rodell C. Barrientos
  • Qibin ZhangEmail author
Research Article

Abstract

The role of cationization in the fragmentation behavior of glycoconjugates is amply documented in collisional activation techniques but remains less explored in ozone-induced dissociation mass spectrometry (OzID-MS). OzID-MS has been used to elucidate the location of carbon–carbon double bonds in unsaturated lipids. Previously, we demonstrated the structural analysis of unsaturated glycosphingolipids using OzID-MS by mass-selecting the [M+Na]+ adduct for fragmentation. In this work, we aimed to examine the effect of different adducts, namely [M+Na]+, [M+Li]+, and [M+H]+ on the OzID-MS fragmentation behavior of a representative unsaturated glycosphingolipid, LacCer d18:1/18:1(9Z). Our data show that [M+H]+ primarily undergoes dehydration followed by collision-induced dissociation-like loss of the headgroup, while [M+Li]+ and [M+Na]+ dissociate at the double bonds albeit with slightly different intensities of the resulting fragments. Using molecular mechanics and theoretical calculations at the semiempirical level, we report for the first time the gas-phase structure of cationized glycosphingolipids, which helps rationalize the observed bond cleavage. Our findings highlight that the type of adducts can influence gas-phase ion structure of glycosphingolipids and subsequently affect their fragmentation in OzID-MS. This study contributes to the growing body of knowledge on OzID-MS and gas-phase structures of ionized lipids and the findings have the potential to be extended to other more complex glycoconjugates.

Keywords

Ozone-induced dissociation Glycosphingolipids Semiempirical calculations Adducts 

Notes

Acknowledgements

This work was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health grant (R21 GM104678). The authors thank the Triad Mass Spectrometry Facility at the UNCG Chemistry and Biochemistry Department, Ngoc Vu, and Dr. Daniel Todd for help with this work.

Supplementary material

13361_2019_2267_MOESM1_ESM.pdf (704 kb)
ESM 1 (PDF 703 kb)

References

  1. 1.
    Merrill, A.H.: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011)CrossRefGoogle Scholar
  2. 2.
    Schnaar, R.L., Kinoshita, T.: In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Glycosphingolipids. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY) (2015)Google Scholar
  3. 3.
    Hakomori, S.: The glycosynapse. Proc. Natl. Acad. Sci. U. S. A. 99, 225–232 (2002)CrossRefGoogle Scholar
  4. 4.
    Lingwood, C.A.: Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 3, a004788 (2011)CrossRefGoogle Scholar
  5. 5.
    Hakomori, S.: Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627–647 (2000)CrossRefGoogle Scholar
  6. 6.
    Tanaka, K., Yamada, M., Tamiya-Koizumi, K., Kannagi, R., Aoyama, T., Hara, A., Kyogashima, M.: Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycoconj. J. 28, 67–87 (2011)CrossRefGoogle Scholar
  7. 7.
    Fujii, T.: Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom. Rev. 19, 111–138 (2000)CrossRefGoogle Scholar
  8. 8.
    Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23, 161–227 (2004)CrossRefGoogle Scholar
  9. 9.
    Cancilla, M.T., Wong, A.W., Voss, L.R., Lebrilla, C.B.: Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. Anal. Chem. 71, 3206–3218 (1999)CrossRefGoogle Scholar
  10. 10.
    Murphy, R.C.: Tandem mass spectrometry of lipids: molecular analysis of complex lipids. In: Gaskell, S.J. (ed.) New developments in mass spectrometry 4. Royal Society of Chemistry, Cambridge, UK, (2014)Google Scholar
  11. 11.
    Ann, Q., Adams, J.: Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]+ ions. J. Am. Soc. Mass Spectrom. 3, 260–263 (1992)CrossRefGoogle Scholar
  12. 12.
    Sullards, M.C., Lynch, D.V., Merrill, A.H., Adams, J.: Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J. Mass Spectrom. 35, 347–353 (2000)CrossRefGoogle Scholar
  13. 13.
    Hsu, F.F., Turk, J.: Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 12, 61–79 (2001)CrossRefGoogle Scholar
  14. 14.
    Kyle, J.E., Zhang, X., Weitz, K.K., Monroe, M.E., Ibrahim, Y.M., Moore, R.J., Cha, J., Sun, X., Lovelace, E.S., Wagoner, J., Polyak, S.J., Metz, T.O., Dey, S.K., Smith, R.D., Burnum-Johnson, K.E., Baker, E.S.: Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 141, 1649–1659 (2016)CrossRefGoogle Scholar
  15. 15.
    Leaptrot, K.L., May, J.C., Dodds, J.N., McLean, J.A.: Ion mobility conformational lipid atlas for high confidence lipidomics. Nat. Commun. 10, 985 (2019)CrossRefGoogle Scholar
  16. 16.
    Wojcik, R., Webb, I., Deng, L., Garimella, S., Prost, S., Ibrahim, Y., Baker, E., Smith, R.: Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 18, 183 (2017)CrossRefGoogle Scholar
  17. 17.
    Jackson, S.N., Colsch, B., Egan, T., Lewis, E.K., Schultz, J.A., Woods, A.S.: Gangliosides’ analysis by MALDI-ion mobility MS. Analyst. 136, 463–466 (2011)CrossRefGoogle Scholar
  18. 18.
    Brown, S.H.J., Mitchell, T.W., Blanksby, S.J.: Analysis of unsaturated lipids by ozone-induced dissociation. Bioch. Biophys. Acta Mol. Cell Biol. Lipids. 1811, 807–817 (2011)CrossRefGoogle Scholar
  19. 19.
    Criegee, R.: Mechanism of ozonolysis. Angew. Chem. Int. Ed. 14, 745–752 (1975)CrossRefGoogle Scholar
  20. 20.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Nealon, J.R., Blanksby, S.J.: Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2008)CrossRefGoogle Scholar
  21. 21.
    Vu, N., Brown, J., Giles, K., Zhang, Q.: Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids. Rapid Commun. Mass Spectrom. 31, 1415–1423 (2017)CrossRefGoogle Scholar
  22. 22.
    Pham, H.T., Maccarone, A.T., Campbell, J.L., Mitchell, T.W., Blanksby, S.J.: Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions. J. Am. Soc. Mass Spectrom. 24, 286–296 (2013)CrossRefGoogle Scholar
  23. 23.
    Barrientos, R.C., Vu, N., Zhang, Q.: Structural analysis of unsaturated glycosphingolipids using shotgun ozone-induced dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2330–2343 (2017)CrossRefGoogle Scholar
  24. 24.
    Goto, H., Osawa, E.: An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J. Chem. Soc. Perkin Trans. 2, 187–198 (1993)Google Scholar
  25. 25.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)CrossRefGoogle Scholar
  26. 26.
    Huczynski, A., Przybylski, P., Brzezinski, B., Bartl, F.: Monensin A methyl ester complexes with Li+, Na+, and K+ cations studied by ESI-MS, 1H- and 13C-NMR, FTIR, as well as PM5 semiempirical method. Biopolymers. 81, 282–294 (2006)CrossRefGoogle Scholar
  27. 27.
    Liebisch, G., Vizcaíno, J.A., Köfeler, H., Trötzmüller, M., Griffiths, W.J., Schmitz, G., Spener, F., Wakelam, M.J.O.: Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523–1530 (2013)CrossRefGoogle Scholar
  28. 28.
    Hsu, F., Turk, J., Stewart, M.E., Downing, D.T.: Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 13, 680–695 (2002)CrossRefGoogle Scholar
  29. 29.
    Tatituri, R.V.V., Brenner, M.B., Turk, J., Hsu, F.-F.: Structural elucidation of diglycosyl diacylglycerol and monoglycosyl diacylglycerol from Streptococcus pneumoniae by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Mass Spectrom. 47, 115–123 (2012)CrossRefGoogle Scholar
  30. 30.
    Han, X., Cheng, H.: Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J. Lipid Res. 46, 163–175 (2005)CrossRefGoogle Scholar
  31. 31.
    Ann, Q., Adams, J.: Structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal. Chem. 65, 7–13 (1993)CrossRefGoogle Scholar
  32. 32.
    Adams, J., Gross, M.L.: Energy requirement for remote charge site ion decompositions and structural information from collisional activation of alkali metal cationized fatty alcohols. J. Am. Chem. Soc. 108, 6915–6921 (1986)CrossRefGoogle Scholar
  33. 33.
    Cancilla, M.T., Penn, S.G., Carroll, J.A., Lebrilla, C.B.: Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/Fourier transform mass spectrometry. J. Am. Chem. Soc. 118, 6736–6745 (1996)CrossRefGoogle Scholar
  34. 34.
    Hancock, S.E., Maccarone, A.T., Poad, B.L.J., Trevitt, A.J., Mitchell, T.W., Blanksby, S.J.: Reaction of ionised steryl esters with ozone in the gas phase. Chem. Phys. Lipids. 221, 198–206 (2019)CrossRefGoogle Scholar
  35. 35.
    Dell, A.:.F.A.B.: Mass spectrometry of carbohydrates. In: Tipson, R.S., Horton, D. (eds.) Advances in Carbohydrate Chemistry and Biochemistry 45, 19–72 (1987)Google Scholar
  36. 36.
    Peng, B., Weintraub, S.T., Coman, C., Ponnaiyan, S., Sharma, R., Tews, B., Winter, D., Ahrends, R.: A comprehensive high-resolution targeted workflow for the deep profiling of sphingolipids. Anal. Chem. 89, 12480–12487 (2017)CrossRefGoogle Scholar
  37. 37.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Murphy, R.C., Blanksby, S.J.: Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry (OzESI-MS). Anal. Chem. 79, 5013–5022 (2007)CrossRefGoogle Scholar
  38. 38.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014)CrossRefGoogle Scholar
  39. 39.
    Franski, R., Eitner, K., Schroeder, G., Szwajka, O.P.: Mass spectrometric study of some protonated and lithiated 2,5-disubstituted-1,3,4-oxadiazoles. J. Am. Soc. Mass Spectrom. 14, 289–294 (2003)CrossRefGoogle Scholar
  40. 40.
    Amorim Madeira, P.J., Vaz, P.D., Bettencourt da Silva, R.J.N., Florêncio, M.H.: Can semi-empirical calculations help solve mass spectrometry problems? Protonation sites and proton affinities of amino acids. ChemPlusChem. 78, 1149–1156 (2013)CrossRefGoogle Scholar
  41. 41.
    Gierczyk, B., Schroeder, G., Przybylski, P., Brzezinski, B., Bartl, F., Zundel, G.: ESI MS, NMR and PM5 semiempirical studies of oligomycin A and its complexes with Li+ and Na+ cations. J. Mol. Struct. 738, 261–270 (2005)CrossRefGoogle Scholar
  42. 42.
    Hofmeister, G.E., Zhou, Z., Leary, J.A.: Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J. Am. Chem. Soc. 113, 5964–5970 (1991)CrossRefGoogle Scholar
  43. 43.
    Wright, P., Alex, A., Pullen, F.: Predicting collision-induced dissociation spectra: semi-empirical calculations as a rapid and effective tool in software-aided mass spectral interpretation. Rapid Commun. Mass Spectrom. 28, 1127–1143 (2014)CrossRefGoogle Scholar
  44. 44.
    Stortz, C.A., Johnson, G.P., French, A.D., Csonka, G.I.: Comparison of different force fields for the study of disaccharides. Carbohydr. Res. 344, 2217–2228 (2009)CrossRefGoogle Scholar
  45. 45.
    Colas, C., Bouchonnet, S., Rogalewicz-Gilard, F., Popot, M., Ohanessian, G.: Proton and sodium cation affinities of harpagide: a computational study. J. Phys. Chem. A. 110, 7503–7508 (2006)CrossRefGoogle Scholar
  46. 46.
    Ervin, K.M.: Experimental techniques in gas-phase ion thermochemistry. Chem. Rev. 101, 391–444 (2001)CrossRefGoogle Scholar
  47. 47.
    Bythell, B.J., Abutokaikah, M.T., Wagoner, A.R., Guan, S., Rabus, J.M.: Cationized carbohydrate gas-phase fragmentation chemistry. J. Am. Soc. Mass Spectrom. 28, 688–703 (2017)CrossRefGoogle Scholar
  48. 48.
    Rabus, J.M., Abutokaikah, M.T., Ross, R.T., Bythell, B.J.: Sodium-cationized carbohydrate gas-phase fragmentation chemistry: influence of glycosidic linkage position. Phys. Chem. Chem. Phys. 19, 25643–25652 (2017)CrossRefGoogle Scholar
  49. 49.
    Ngoka, L.C., Gal, J.F., Lebrilla, C.B.: Effects of cations and charge types on the metastable decay rates of oligosaccharides. Anal. Chem. 66, 692–698 (1994)CrossRefGoogle Scholar
  50. 50.
    Rožman, M.: Characterization and modeling of the collision induced dissociation patterns of deprotonated glycosphingolipids: cleavage of the glycosidic bond. J. Am. Soc. Mass Spectrom. 27, 91–98 (2016)CrossRefGoogle Scholar
  51. 51.
    Cerda, B.A., Wesdemiotis, C.: Thermochemistry and structures of Na+ coordinated mono- and disaccharide stereoisomers. Int. J. Mass Spectrom. 189, 189–204 (1999)CrossRefGoogle Scholar
  52. 52.
    Harvey, D.J.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)CrossRefGoogle Scholar
  53. 53.
    Penn, S.G., Cancilla, M.T., Lebrilla, C.B.: Fragmentation behavior of multiple-metal-coordinated acidic oligosaccharides studied by matrix-assisted laser desorption ionization Fourier transform mass spectrometry. Int. J. Mass Spectrom. 195-196, 259–269 (2000)CrossRefGoogle Scholar
  54. 54.
    Poad, B.L.J., Maccarone, A.T., Yu, H., Mitchell, T.W., Saied, E.M., Arenz, C., Hornemann, T., Bull, J.N., Bieske, E.J., Blanksby, S.J.: Differential-mobility spectrometry of 1-deoxysphingosine isomers: new insights into the gas phase structures of ionized lipids. Anal. Chem. 90, 5343–5351 (2018)CrossRefGoogle Scholar
  55. 55.
    Zhou, Z., Tu, J., Xiong, X., Shen, X., Zhu, Z.J.: LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal. Chem. 89, 9559–9566 (2017)CrossRefGoogle Scholar
  56. 56.
    Nangia, P.S., Benson, S.W.: Thermochemistry and kinetics of ozonation reactions. J. Am. Chem. Soc. 102, 3105–3115 (1980)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of North Carolina at GreensboroGreensboroUSA
  2. 2.UNCG Center for Translational Biomedical ResearchNC Research CampusKannapolisUSA

Personalised recommendations