Advertisement

Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects

  • Brett M. Marsh
  • Kiran Iyer
  • R. Graham CooksEmail author
Focus: Honoring Helmut Schwarzʻs Election to the National Academy of Sciences: Research Article

Abstract

Phenylhydrazone formation from isatin is used to examine the effects on the reaction rate of (i) electrospray emitter distance from the mass spectrometer (MS) inlet, (ii) emitter tip diameter, and (iii) presence of surfactant. Reaction rates are characterized through measurement of conversion ratios. It is found that there is an increase in the conversion ratio as (i) the electrospray source is moved further from the inlet of the mass spectrometer, (ii) smaller sprayer diameters are used, and (iii) when surfactants are present. Each of these experimental operations is associated with an increase in reaction rate and with a decrease in average droplet sizes. The size measurements are made using super resolution microscopy from the “splash” on a collector surface produced by a fluorescent marker sprayed using conditions similar to those used for the reaction mixture. This measurement showed that droplets undergo significant evaporation as a function of distance of flight, thereby increasing their surface to volume ratios. Similarly, the effect of nanoelectrospray emitter size on conversion ratio is also found to be associated with changes in droplet size for which a 4 to 10 times increase in reaction rate is seen using tip diameters ranging from 20 μm down to 1 μm. Finally, the effects of surfactants in producing smaller droplets with corresponding large increases in reaction rate are demonstrated by splash microscopy. These findings point to reaction acceleration being strongly associated with reactions at the surfaces of microdroplets.

Keywords

Microdroplets Reaction acceleration Microscopy Hydrazone Surface reactions 

Notes

Acknowledgements

This work was financially supported by the Agilent Technologies Inc. through gift no. 4212 of an Ultivo Triple Quadrupole mass spectrometer.

Supplementary material

13361_2019_2264_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Schwarz, H., González-Navarrete, P., Li, J., Schlangen, M., Sun, X., Weiske, T., Zhou, S.: Unexpected mechanistic variants in the thermal gas-phase activation of methane. Organometallics. 36(1), 8–17 (2017)CrossRefGoogle Scholar
  2. 2.
    Mondal, S., Acharya, S., Biswas, R., Bagchi, B., Zare, R.N.: Enhancement of reaction rate in small-sized droplets: a combined analytical and simulation study. J. Chem. Phys. 148(24), 244704 (2018)CrossRefGoogle Scholar
  3. 3.
    Yan, X., Lai, Y.-H., Zare, R.N.: Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes. Chem. Sci. 9(23), 5207–5211 (2018)CrossRefGoogle Scholar
  4. 4.
    Girod, M., Moyano, E., Campbell, D.I., Cooks, R.G.: Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2(3), 501–510 (2011)CrossRefGoogle Scholar
  5. 5.
    Yan, X., Bain, R.M., Cooks, R.G.: Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55(42), 12960–12972 (2016)CrossRefGoogle Scholar
  6. 6.
    Bain, R.M., Pulliam, C.J., Yan, X., Moore, K.F., Müller, T., Cooks, R.G.: Mass spectrometry in organic synthesis: Claisen–Schmidt Base-catalyzed condensation and Hammett correlation of substituent effects. J. Chem. Educ. 91(11), 1985–1989 (2014)CrossRefGoogle Scholar
  7. 7.
    Lee, J.K., Kim, S., Nam, H.G., Zare, R.N.: Microdroplet fusion mass spectrometry for fast reaction kinetics. Proc. Natl. Acad. Sci. 112(13), 3898–3903 (2015)CrossRefGoogle Scholar
  8. 8.
    Bain, R.M., Sathyamoorthi, S., Zare, R.N.: “On-droplet” chemistry: the cycloaddition of diethyl azodicarboxylate and quadricyclane. Angew. Chem. Int. Ed. 56(47), 15083–15087 (2017)CrossRefGoogle Scholar
  9. 9.
    Lai, Y.-H., Sathyamoorthi, S., Bain, R., Zare, R.: Microdroplets accelerate ring opening of epoxides. J. Am. Soc. Mass. Spectrom. 29, 1036–1043 (2018)CrossRefGoogle Scholar
  10. 10.
    Bain, R.M., Pulliam, C.J., Cooks, R.G.: Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6(1), 397–401 (2015)CrossRefGoogle Scholar
  11. 11.
    Espy, R.D., Wleklinski, M., Yan, X., Cooks, R.G.: Beyond the flask: reactions on the fly in ambient mass spectrometry. TrAC Trends Anal. Chem. 57, 135–146 (2014)CrossRefGoogle Scholar
  12. 12.
    Lee, J.K., Samanta, D., Nam, H.G., Zare, R.N.: Spontaneous formation of gold nanostructures in aqueous microdroplets. Nat. Commun. 9(1), 1562 (2018)CrossRefGoogle Scholar
  13. 13.
    Zhou, Z., Yan, X., Lai, Y.-H., Zare, R.N.: Fluorescence polarization anisotropy in microdroplets. J. Phys. Chem. Lett. 9(11), 2928–2932 (2018)CrossRefGoogle Scholar
  14. 14.
    Dobson, C.M., Ellison, G.B., Tuck, A.F., Vaida, V.: Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl. Acad. Sci. 97(22), 11864 (2000)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Liu, Y., Gao, H., Helmy, R., Wuelfing, W.P., Welch, C.J., Cooks, R.G.: Accelerated forced degradation of pharmaceuticals in Levitated microdroplet reactors. Chem. Eur. J. 24(29), 7349–7353 (2018)CrossRefGoogle Scholar
  16. 16.
    Crawford, E.A., Esen, C., Volmer, D.A.: Real time monitoring of containerless microreactions in acoustically levitated droplets via ambient ionization mass spectrometry. Anal. Chem. 88(17), 8396–8403 (2016)CrossRefGoogle Scholar
  17. 17.
    Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V., Kolb, H.C., Sharpless, K.B.: “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44(21), 3275–3279 (2005)CrossRefGoogle Scholar
  18. 18.
    Fallah-Araghi, A., Meguellati, K., Baret, J.-C., Harrak, A.E., Mangeat, T., Karplus, M., Ladame, S., Marques, C.M., Griffiths, A.D.: Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112(2), 028301 (2014)CrossRefGoogle Scholar
  19. 19.
    Allen, H.C., Casillas-Ituarte, N.N., Sierra-Hernández, M.R., Chen, X., Tang, C.Y.: Shedding light on water structure at air–aqueous interfaces: ions, lipids, and hydration. Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009)CrossRefGoogle Scholar
  20. 20.
    Bain, R.M., Pulliam, C.J., Ayrton, S.T., Bain, K., Cooks, R.G.: Accelerated hydrazone formation in charged microdroplets. Rapid Commun. Mass Spectrom. 30(16), 1875–1878 (2016)CrossRefGoogle Scholar
  21. 21.
    Hollerbach, A., Logsdon, D., Iyer, K., Li, A., Schaber, J.A., Graham Cooks, R.: Sizing sub-diffraction limit electrosprayed droplets by structured illumination microscopy. Analyst. 143(1), 232–240 (2018)CrossRefGoogle Scholar
  22. 22.
    Wleklinski, M., Falcone, C.E., Loren, B.P., Jaman, Z., Iyer, K., Ewan, H.S., Hyun, S.-H., Thompson, D.H., Cooks, R.G.: Can accelerated reactions in droplets guide chemistry at scale? Eur. J. Org. Chem. 2016(33), 5480–5484 (2016)CrossRefGoogle Scholar
  23. 23.
    Espy, R.D., Muliadi, A.R., Ouyang, Z., Cooks, R.G.: Spray mechanism in paper spray ionization. Int. J. Mass Spectrom. 325-327, 167–171 (2012)CrossRefGoogle Scholar
  24. 24.
    Liigand, P., Heering, A., Kaupmees, K., Leito, I., Girod, M., Antoine, R., Kruve, A.: The evolution of electrospray generated droplets is not affected by ionization mode. J. Am. Soc. Mass Spectrom. 28(10), 2124–2131 (2017)CrossRefGoogle Scholar
  25. 25.
    Soleilhac, A., Dagany, X., Dugourd, P., Girod, M., Antoine, R.: Correlating droplet size with temperature changes in electrospray source by optical methods. Anal. Chem. 87(16), 8210–8217 (2015)CrossRefGoogle Scholar
  26. 26.
    Bielawska, M., Chodzińska, A., Jańczuk, B., Zdziennicka, A.: Determination of CTAB CMC in mixed water+short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids Surf. A Physicochem. Eng. Asp. 424, 81–88 (2013)CrossRefGoogle Scholar
  27. 27.
    Verrall, R.E.: Kinetics studies of alcohol–surfactant mixed micelles. Chem. Soc. Rev. 24(2), 135–142 (1995)CrossRefGoogle Scholar
  28. 28.
    Burrows, J.C., Flynn, D.J., Kutay, S.M., Leriche, T.G., Marangoni, D.G.: Thermodynamics in surfactant solutions: determination of the micellization enthalpy and entropy of alcohol/surfactant mixed micelles. A comparison of calorimetric methods with temperature differentiation of the ln Xcmc values. Langmuir. 11(9), 3388–3394 (1995)CrossRefGoogle Scholar
  29. 29.
    Chen, Y., Okur, H.I., Lütgebaucks, C., Roke, S.: Zwitterionic and charged lipids form remarkably different structures on nanoscale oil droplets in aqueous solution. Langmuir. 34(3), 1042–1050 (2018)CrossRefGoogle Scholar
  30. 30.
    Gopalakrishnan, S., Liu, D., Allen, H.C., Kuo, M., Shultz, M.J.: Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. 106(4), 1155–1175 (2006)CrossRefGoogle Scholar
  31. 31.
    Mitropoulos, A. Ch.: What is a surface excess? J. Eng. Sci. and Tech. Rev. 1(1), 1–3 (2008)Google Scholar
  32. 32.
    Wang, C., Morgner, H.: The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counter-ions therein. Phys. Chem. Chem. Phys. 16(42), 23386–23393 (2014)CrossRefGoogle Scholar
  33. 33.
    Tang, L., Kebarle, P.: Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal. Chem. 65(24), 3654–3668 (1993)CrossRefGoogle Scholar
  34. 34.
    Nam, I., Nam, H.G., Zare, R.N.: Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc. Natl. Acad. Sci. 115(1), 36 (2018)CrossRefGoogle Scholar
  35. 35.
    Li, Y., Yan, X., Cooks, R.G.: The role of the Interface in thin film and droplet accelerated reactions studied by competitive substituent effects. Angew. Chem. Int. Ed. 55(10), 3433–3437 (2016)CrossRefGoogle Scholar
  36. 36.
    Bain, R.M., Pulliam, C.J., Thery, F., Cooks, R.G.: Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Angew. Chem. Int. Ed. 55(35), 10478–10482 (2016)CrossRefGoogle Scholar
  37. 37.
    Iyer, K., Yi, J., Bogdan, A., Talaty, N., Djuric, S.W., Cooks, R.G.: Accelerated multi-reagent copper catalysed coupling reactions in micro droplets and thin films. React Chem Eng. 3(2), 206–209 (2018)CrossRefGoogle Scholar
  38. 38.
    Wei, Z., Wleklinski, M., Ferreira, C., Cooks, R.G.: Reaction acceleration in thin films with continuous product deposition for organic synthesis. Angew. Chem. 129(32), 9514–9518 (2017)CrossRefGoogle Scholar
  39. 39.
    Badu-Tawiah, A.K., Campbell, D.I., Cooks, R.G.: Accelerated C–N bond formation in dropcast thin films on ambient surfaces. J. Am. Soc. Mass Spectrom. 23(9), 1461–1468 (2012)CrossRefGoogle Scholar
  40. 40.
    Baird, Z., Peng, W.-P., Cooks, R.G.: Ion transport and focal properties of an ellipsoidal electrode operated at atmospheric pressure. Int. J. Mass Spectrom. 330-332, 277–284 (2012)CrossRefGoogle Scholar
  41. 41.
    Anyin, L., Zane, B., Soumabha, B., Depanjan, S., Anupama, P., Thalappil, P., Graham, C.R.: Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. 126(46), 12736–12739 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations