Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1621–1630 | Cite as

Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation

  • David L. MarshallEmail author
  • Angela Criscuolo
  • Reuben S. E. Young
  • Berwyck L. J. Poad
  • Martin Zeller
  • Gavin E. Reid
  • Todd W. Mitchell
  • Stephen J. BlanksbyEmail author
Research Article


Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.


Lipidomics Ozone-induced dissociation Data-independent analysis Plasma 



The authors acknowledge generous financial support provided by the Australian Research Council (ARC) through the Discovery Program (DP150101715 and DP190101486), and the EU H2020 funded MASSTRPLAN project (grant number 675132). Some of the data reported here were acquired at the QUT Central Analytical Research Facility (CARF) operated by the Institute for Future Environments.

Supplementary material

13361_2019_2261_MOESM1_ESM.docx (2.9 mb)
ESM 1 (DOCX 2991 kb)


  1. 1.
    Quehenberger, O., Dennis, E.A.: The human plasma lipidome. N Engl. J. Med. 365, 1812–1823 (2011)CrossRefGoogle Scholar
  2. 2.
    Mapstone, M., Cheema, A.K., Fiandaca, M.S., Zhong, X., Mhyre, T.R., MacArthur, L.H., Hall, W.J., Fisher, S.G., Peterson, D.R., Haley, J.M., Nazar, M.D., Rich, S.A., Berlau, D.J., Peltz, C.B., Tan, M.T., Kawas, C.H., Federoff, H.J.: Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418 (2014)CrossRefGoogle Scholar
  3. 3.
    Lin, H.-M., Mahon, K.L., Weir, J.M., Mundra, P.A., Spielman, C., Briscoe, K., Gurney, H., Mallesara, G., Marx, G., Stockler, M.R., Consortium, P., Parton, R.G., Hoy, A.J., Daly, R.J., Meikle, P.J., Horvath, L.G.: A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int. J. Cancer. 141, 2112–2120 (2017)CrossRefGoogle Scholar
  4. 4.
    Mousa, A., Naderpoor, N., Mellett, N., Wilson, K., Plebanski, M., Meikle, P.J., de Courten, B.: Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1864, 335–343 (2019)CrossRefGoogle Scholar
  5. 5.
    Mundra, P.A., Barlow, C.K., Nestel, P.J., Barnes, E.H., Kirby, A., Thompson, P., Sullivan, D.R., Alshehry, Z.H., Mellett, N.A., Huynh, K., Jayawardana, K.S., Giles, C., McConville, M.J., Zoungas, S., Hillis, G.S., Chalmers, J., Woodward, M., Wong, G., Kingwell, B.A., Simes, J., Tonkin, A.M., Meikle, P.J., Investigators, L.S.: Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 3, e121326 (2018)CrossRefGoogle Scholar
  6. 6.
    Vvedenskaya, O., Wang, Y., Ackerman, J.M., Knittelfelder, O., Shevchenko, A.: Analytical challenges in human plasma lipidomics: a winding path towards the truth. TrAC Trends Anal. Chem. (2018)
  7. 7.
    Schuhmann, K., Almeida, R., Baumert, M., Herzog, R., Bornstein, S.R., Shevchenko, A.: Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 47, 96–104 (2012)CrossRefGoogle Scholar
  8. 8.
    Gallego, S.F., Højlund, K., Ejsing, C.S.: Easy, fast, and reproducible quantification of cholesterol and other lipids in human plasma by combined high resolution MSX and FTMS analysis. J. Am. Soc. Mass Spectrom. 29, 34–41 (2018)CrossRefGoogle Scholar
  9. 9.
    Quehenberger, O., Armando, A.M., Brown, A.H., Milne, S.B., Myers, D.S., Merrill, A.H., Bandyopadhyay, S., Jones, K.N., Kelly, S., Shaner, R.L., Sullards, C.M., Wang, E., Murphy, R.C., Barkley, R.M., Leiker, T.J., Raetz, C.R.H., Guan, Z., Laird, G.M., Six, D.A., Russell, D.W., McDonald, J.G., Subramaniam, S., Fahy, E., Dennis, E.A.: Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299–3305 (2010)CrossRefGoogle Scholar
  10. 10.
    Baglai, A., Gargano, A.F.G., Jordens, J., Mengerink, Y., Honing, M., van der Wal, S., Schoenmakers, P.J.: Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: two-dimensional liquid chromatography–mass spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry. J. Chromatogr. A. 1530, 90–103 (2017)CrossRefGoogle Scholar
  11. 11.
    Rampler, E., Criscuolo, A., Zeller, M., El Abiead, Y., Schoeny, H., Hermann, G., Sokol, E., Cook, K., Peake, D.A., Delanghe, B., Koellensperger, G.: A novel Lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies. Anal. Chem. 90, 6494–6501 (2018)CrossRefGoogle Scholar
  12. 12.
    Christinat, N., Morin-Rivron, D., Masoodi, M.: High-throughput quantitative lipidomics analysis of nonesterified fatty acids in human plasma. J. Proteome Res. 15, 2228–2235 (2016)CrossRefGoogle Scholar
  13. 13.
    Phinney, K.W., Ballihaut, G., Bedner, M., Benford, B.S., Camara, J.E., Christopher, S.J., Davis, W.C., Dodder, N.G., Eppe, G., Lang, B.E., Long, S.E., Lowenthal, M.S., McGaw, E.A., Murphy, K.E., Nelson, B.C., Prendergast, J.L., Reiner, J.L., Rimmer, C.A., Sander, L.C., Schantz, M.M., Sharpless, K.E., Sniegoski, L.T., Tai, S.S.C., Thomas, J.B., Vetter, T.W., Welch, M.J., Wise, S.A., Wood, L.J., Guthrie, W.F., Hagwood, C.R., Leigh, S.D., Yen, J.H., Zhang, N.-F., Chaudhary-Webb, M., Chen, H., Fazili, Z., LaVoie, D.J., McCoy, L.F., Momin, S.S., Paladugula, N., Pendergrast, E.C., Pfeiffer, C.M., Powers, C.D., Rabinowitz, D., Rybak, M.E., Schleicher, R.L., Toombs, B.M.H., Xu, M., Zhang, M., Castle, A.L.: Development of a standard reference material for metabolomics research. Anal. Chem. 85, 11732–11738 (2013)CrossRefGoogle Scholar
  14. 14.
    Bowden, J.A., Heckert, A., Ulmer, C.Z., Jones, C.M., Koelmel, J.P., Abdullah, L., Ahonen, L., Alnouti, Y., Armando, A.M., Asara, J.M., Bamba, T., Barr, J.R., Bergquist, J., Borchers, C.H., Brandsma, J., Breitkopf, S.B., Cajka, T., Cazenave-Gassiot, A., Checa, A., Cinel, M.A., Colas, R.A., Cremers, S., Dennis, E.A., Evans, J.E., Fauland, A., Fiehn, O., Gardner, M.S., Garrett, T.J., Gotlinger, K.H., Han, J., Huang, Y., Neo, A.H., Hyötyläinen, T., Izumi, Y., Jiang, H., Jiang, H., Jiang, J., Kachman, M., Kiyonami, R., Klavins, K., Klose, C., Köfeler, H.C., Kolmert, J., Koal, T., Koster, G., Kuklenyik, Z., Kurland, I.J., Leadley, M., Lin, K., Maddipati, K.R., McDougall, D., Meikle, P.J., Mellett, N.A., Monnin, C., Moseley, M.A., Nandakumar, R., Oresic, M., Patterson, R., Peake, D., Pierce, J.S., Post, M., Postle, A.D., Pugh, R., Qiu, Y., Quehenberger, O., Ramrup, P., Rees, J., Rembiesa, B., Reynaud, D., Roth, M.R., Sales, S., Schuhmann, K., Schwartzman, M.L., Serhan, C.N., Shevchenko, A., Somerville, S.E., St. John Williams, L., Surma, M.A., Takeda, H., Thakare, R., Thompson, J.W., Torta, F., Triebl, A., Trötzmüller, M., Ubhayasekera, S.J.K., Vuckovic, D., Weir, J.M., Welti, R., Wenk, M.R., Wheelock, C.E., Yao, L., Yuan, M., Zhao, X.H., Zhou, S.: Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–metabolites in frozen human plasma. J. Lipid Res. 58, 2275–2288 (2017)CrossRefGoogle Scholar
  15. 15.
    Burla, B., Arita, M., Arita, M., Bendt, A.K., Cazenave-Gassiot, A., Dennis, E.A., Ekroos, K., Han, X., Ikeda, K., Liebisch, G., Lin, M.K., Loh, T.P., Meikle, P.J., Orešič, M., Quehenberger, O., Shevchenko, A., Torta, F., Wakelam, M.J.O., Wheelock, C.E., Wenk, M.R.: MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 59, 2001–2017 (2018)CrossRefGoogle Scholar
  16. 16.
    Bowden, J.A., Ulmer, C.Z., Jones, C.M., Koelmel, J.P., Yost, R.A.: NIST lipidomics workflow questionnaire: an assessment of community-wide methodologies and perspectives. Metabolomics. 14(53), (2018)Google Scholar
  17. 17.
    Liebisch, G., Ekroos, K., Hermansson, M., Ejsing, C.S.: Reporting of lipidomics data should be standardized. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1862, 747–751 (2017)CrossRefGoogle Scholar
  18. 18.
    Koelmel, J.P., Ulmer, C.Z., Jones, C.M., Yost, R.A., Bowden, J.A.: Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1862, 766–770 (2017)CrossRefGoogle Scholar
  19. 19.
    Hancock, S.E., Poad, B.L.J., Batarseh, A., Abbott, S.K., Mitchell, T.W.: Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal. Biochem. 524, 45–55 (2017)CrossRefGoogle Scholar
  20. 20.
    Shevchenko, A., Simons, K.: Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11, 593–598 (2010)CrossRefGoogle Scholar
  21. 21.
    Wozny, K., Lehmann, W.D., Wozny, M., Akbulut, B.S., Brügger, B.: A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 411, 915–924 (2019)CrossRefGoogle Scholar
  22. 22.
    Kozlowski, R.L., Mitchell, T.W., Blanksby, S.J.: Separation and identification of phosphatidylcholine regioisomers by combining liquid chromatography with a fusion of collision-and ozone-induced dissociation. Eur. J. Mass Spectrom. 21, 191–200 (2015)CrossRefGoogle Scholar
  23. 23.
    Maccarone, A.T., Duldig, J., Mitchell, T.W., Blanksby, S.J., Duchoslav, E., Campbell, J.L.: Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. J. Lipid Res. 55, 1668–1677 (2014)CrossRefGoogle Scholar
  24. 24.
    Marshall, D.L., Pham, H.T., Bhujel, M., Chin, J.S.R., Yew, J.Y., Mori, K., Mitchell, T.W., Blanksby, S.J.: Sequential collision- and ozone-induced dissociation enables assignment of relative acyl chain position in triacylglycerols. Anal. Chem. 88, 2685–2692 (2016)CrossRefGoogle Scholar
  25. 25.
    Pham, H.T., Maccarone, A.T., Thomas, M.C., Campbell, J.L., Mitchell, T.W., Blanksby, S.J.: Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards "top-down" lipidomics. Analyst. 139, 204–214 (2014)CrossRefGoogle Scholar
  26. 26.
    Leskinen, H.M., Suomela, J.-P., Kallio, H.P.: Quantification of triacylglycerol regioisomers by ultra-high-performance liquid chromatography and ammonia negative ion atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1–5 (2010)CrossRefGoogle Scholar
  27. 27.
    Řezanka, T., Pádrová, K., Sigler, K.: Regioisomeric and enantiomeric analysis of triacylglycerols. Anal. Biochem. 524, 3–12 (2017)CrossRefGoogle Scholar
  28. 28.
    Ekroos, K., Ejsing, C.S., Bahr, U., Karas, M., Simons, K., Shevchenko, A.: Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44, 2181–2192 (2003)CrossRefGoogle Scholar
  29. 29.
    Han, X., Gross, R.W.: Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6, 1202–1210 (1995)CrossRefGoogle Scholar
  30. 30.
    Zacek, P., Bukowski, M., Rosenberger, T.A., Picklo, M.: Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer. J. Lipid Res. 57, 2225–2234 (2016)CrossRefGoogle Scholar
  31. 31.
    Ekroos, K.: Lipidomics perspective: from molecular lipidomics to validated clinical diagnostics. In: Ekroos, K. (ed.) . Wiley-VCH, Weinheim (2012)Google Scholar
  32. 32.
    Martinez-Seara, H., Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., Reigada, R.: Effect of double bond position on lipid bilayer properties: insight through atomistic simulations. J. Phys. Chem. B. 111, 11162–11168 (2007)CrossRefGoogle Scholar
  33. 33.
    Martinez-Seara, H., Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., Reigada, R.: Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. Biophys. J. 95, 3295–3305 (2008)CrossRefGoogle Scholar
  34. 34.
    Renne, M.F., de Kroon, A.I.P.M.: The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 592, 1330–1345 (2018)CrossRefGoogle Scholar
  35. 35.
    Ma, X., Chong, L., Tian, R., Shi, R., Hu, T.Y., Ouyang, Z., Xia, Y.: Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U. S. A. 113, 2573–2578 (2016)CrossRefGoogle Scholar
  36. 36.
    Vriens, K., Christen, S., Parik, S., Broekaert, D., Yoshinaga, K., Talebi, A., Dehairs, J., Escalona-Noguero, C., Schmieder, R., Cornfield, T., Charlton, C., Romero-Pérez, L., Rossi, M., Rinaldi, G., Orth, M.F., Boon, R., Kerstens, A., Kwan, S.Y., Faubert, B., Méndez-Lucas, A., Kopitz, C.C., Chen, T., Fernandez-Garcia, J., Duarte, J.A.G., Schmitz, A.A., Steigemann, P., Najimi, M., Hägebarth, A., Van Ginderachter, J.A., Sokal, E., Gotoh, N., Wong, K.-K., Verfaillie, C., Derua, R., Munck, S., Yuneva, M., Beretta, L., DeBerardinis, R.J., Swinnen, J.V., Hodson, L., Cassiman, D., Verslype, C., Christian, S., Grünewald, S., Grünewald, T.G.P., Fendt, S.-M.: Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 566, 403–406 (2019)CrossRefGoogle Scholar
  37. 37.
    Pauling, J.K., Hermansson, M., Hartler, J., Christiansen, K., Gallego, S.F., Peng, B., Ahrends, R., Ejsing, C.S.: Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 12, e0188394 (2017)CrossRefGoogle Scholar
  38. 38.
    Poad, B.L.J., Maccarone, A.T., Yu, H., Mitchell, T.W., Saied, E.M., Arenz, C., Hornemann, T., Bull, J.N., Bieske, E.J., Blanksby, S.J.: Differential-mobility spectrometry of 1-deoxysphingosine isomers: new insights into the gas phase structures of ionized lipids. Anal. Chem. 90, 5343–5351 (2018)CrossRefGoogle Scholar
  39. 39.
    Groessl, M., Graf, S., Knochenmuss, R.: High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 140, 6904–6911 (2015)CrossRefGoogle Scholar
  40. 40.
    Kyle, J.E., Zhang, X., Weitz, K.K., Monroe, M.E., Ibrahim, Y.M., Moore, R.J., Cha, J., Sun, X., Lovelace, E.S., Wagoner, J., Polyak, S.J., Metz, T.O., Dey, S.K., Smith, R.D., Burnum-Johnson, K.E., Baker, E.S.: Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 141, 1649–1659 (2016)CrossRefGoogle Scholar
  41. 41.
    Ma, X., Xia, Y.: Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry. Angew. Chem. Int. Ed. 53, 2592–2596 (2014)CrossRefGoogle Scholar
  42. 42.
    Ryan, E., Nguyen, C.Q.N., Shiea, C., Reid, G.E.: Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1406–1419 (2017)CrossRefGoogle Scholar
  43. 43.
    Williams, P.E., Klein, D.R., Greer, S.M., Brodbelt, J.S.: Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J. Am. Chem. Soc. 139, 15681–15690 (2017)CrossRefGoogle Scholar
  44. 44.
    Campbell, J.L., Baba, T.: Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal. Chem. 87, 5837–5845 (2015)CrossRefGoogle Scholar
  45. 45.
    Yang, K., Dilthey, B.G., Gross, R.W.: Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal. Chem. 85, 9742–9750 (2013)CrossRefGoogle Scholar
  46. 46.
    Wang, M., Han, R.H., Han, X.: Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem. 85, 9312–9320 (2013)CrossRefGoogle Scholar
  47. 47.
    Ma, X., Zhao, X., Li, J., Zhang, W., Cheng, J.-X., Ouyang, Z., Xia, Y.: Photochemical tagging for quantitation of unsaturated fatty acids by mass spectrometry. Anal. Chem. 88, 8931–8935 (2016)CrossRefGoogle Scholar
  48. 48.
    Zhang, W.P., Zhang, D.H., Chen, Q.H., Wu, J.H., Ouyang, Z., Xia, Y.: Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 10, 79 (2019)CrossRefGoogle Scholar
  49. 49.
    Thomas, M.C., Mitchell, T.W., Blanksby, S.J.: Online ozonolysis methods for the determination of double bond position in unsaturated lipids. Methods Mol. Biol. 579, 413–441 (2009)CrossRefGoogle Scholar
  50. 50.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Nealon, J.R., Blanksby, S.J.: Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2008)CrossRefGoogle Scholar
  51. 51.
    Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D.: Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008)CrossRefGoogle Scholar
  52. 52.
    Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods. 4, 709–712 (2007)CrossRefGoogle Scholar
  53. 53.
    Liebisch, G., Vizcaíno, J.A., Köfeler, H., Trötzmüller, M., Griffiths, W.J., Schmitz, G., Spener, F., Wakelam, M.J.O.: Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523–1530 (2013)CrossRefGoogle Scholar
  54. 54.
    Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., Raetz, C.R.H., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M.S., White, S.H., Witztum, J.L., Dennis, E.A.: A comprehensive classification system for lipids. J. Lipid Res. 46, 839–862 (2005)CrossRefGoogle Scholar
  55. 55.
    Yu, Z., Chen, H., Zhu, Y., Ai, J., Li, Y., Gu, W., Borgia, J.A., Zhang, J., Jiang, B., Chen, W., Deng, Y.: Global lipidomics reveals two plasma lipids as novel biomarkers for the detection of squamous cell lung cancer: a pilot study. Oncol. Lett. 16(761–768), (2018)Google Scholar
  56. 56.
    Hancock, S.E., Maccarone, A.T., Poad, B.L.J., Trevitt, A.J., Mitchell, T.W., Blanksby, S.J.: Reaction of ionised steryl esters with ozone in the gas phase. Chem. Phys. Lipids. 221, 198–206 (2019)CrossRefGoogle Scholar
  57. 57.
    Ren, J., Franklin, E.T., Xia, Y.: Uncovering structural diversity of unsaturated fatty acyls in cholesteryl esters via photochemical reaction and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1432–1441 (2017)CrossRefGoogle Scholar
  58. 58.
    Poad, B.L.J., Pham, H.T., Thomas, M.C., Nealon, J.R., Campbell, J.L., Mitchell, T.W., Blanksby, S.J.: Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J. Am. Soc. Mass Spectrom. 21, 1989–1999 (2010)CrossRefGoogle Scholar
  59. 59.
    Barrientos, R.C., Vu, N., Zhang, Q.: Structural analysis of unsaturated glycosphingolipids using shotgun ozone-induced dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2330–2343 (2017)CrossRefGoogle Scholar
  60. 60.
    Steiner, R., Saied, E.M., Othman, A., Arenz, C., Maccarone, A.T., Poad, B.L.J., Blanksby, S.J., von Eckardstein, A., Hornemann, T.: Elucidating the chemical structure of native 1-deoxysphingosine. J. Lipid Res. 57, 1194–1203 (2016)CrossRefGoogle Scholar
  61. 61.
    Ryan, E., Reid, G.E.: Chemical derivatization and ultrahigh resolution and accurate mass spectrometry strategies for “shotgun” lipidome analysis. Acc. Chem. Res. 49, 1596–1604 (2016)CrossRefGoogle Scholar
  62. 62.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Murphy, R.C., Blanksby, S.J.: Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal. Chem. 79, 5013–5022 (2007)CrossRefGoogle Scholar
  63. 63.
    Bielow, C., Mastrobuoni, G., Orioli, M., Kempa, S.: On mass ambiguities in high-resolution shotgun lipidomics. Anal. Chem. 89, 2986–2994 (2017)CrossRefGoogle Scholar
  64. 64.
    Heiskanen, L.A., Suoniemi, M., Ta, H.X., Tarasov, K., Ekroos, K.: Long-term performance and stability of molecular shotgun lipidomic analysis of human plasma samples. Anal. Chem. 85, 8757–8763 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Central Analytical Research Facility, Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia
  2. 2.Institute of Bioanalytical Chemistry, Faculty of Chemistry and MineralogyUniversität LeipzigLeipzigGermany
  3. 3.Center for Biotechnology and BiomedicineUniversität LeipzigLeipzigGermany
  4. 4.Thermo Fisher Scientific (Bremen) GmbHBremenGermany
  5. 5.School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  6. 6.School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  7. 7.School of Medicine and Molecular HorizonsUniversity of WollongongWollongongAustralia
  8. 8.Illawarra Health and Medical Research InstituteWollongongAustralia

Personalised recommendations