Advertisement

Elucidating Branching Topology and Branch Lengths in Star-Branched Polymers by Tandem Mass Spectrometry

  • Jialin Mao
  • Boyu Zhang
  • Hong Zhang
  • Ravinder Elupula
  • Scott M. Grayson
  • Chrys WesdemiotisEmail author
Focus: Honoring Helmut Schwarz's Election to the National Academy of Sciences: Research Article

Abstract

Tandem mass spectrometry (MS2) has been employed to elucidate the topology and branching architecture of star-branched polyethers. The polymers were ionized by matrix-assisted laser desorption/ionization (MALDI) to positive ions and dissociated after leaving the ion source via laser-induced fragmentation. The bond scissions caused under MALDI-MS2 conditions occur preferentially near the core-branch joining points due to energetically favorable homolytic and heterolytic bond cleavages near the core and release of steric strain and/or reduction of crowding. This unique fragmentation mode detaches complete arms from the core generating fragment ion series at the expected molecular weight of each branch. The number of fragment ion distributions observed combined with their mass-to-charge ratios permit conclusive determination of the degree of branching and the corresponding branch lengths, as demonstrated for differently branched homo- and mikto-arm polyether stars synthesized via azide-alkyne click chemistry. The results of this study underscore the utility of MS2 for the characterization of branching architecture and branch lengths of (co) polymers with two or more linear chains attached to a functionalized central core.

Keywords

Star-branched polymers Tandem mass spectrometry Polymer architecture Degree of branching Branch lengths 

Notes

Acknowledgements

Support from the National Science Foundation (grant CHE-1808115) is gratefully acknowledged.

Supplementary material

13361_2019_2260_MOESM1_ESM.docx (674 kb)
ESM 1 (DOCX 670 kb)

References

  1. 1.
    Daoud, M., Cotton, J.P.: Star shaped polymers: a model for the conformation and its concentration dependence. J. Phys.-Paris. 43, 531–538 (1982)CrossRefGoogle Scholar
  2. 2.
    Inoue, K.: Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 25, 453–571 (2000)CrossRefGoogle Scholar
  3. 3.
    Ren, J.M., McKenzie, T.G., Fu, Q., Wong, E.H.H., Xu, J., An, Z., Shanmugam, S., Davis, T.P., Boyer, C., Qiao, G.G.: Star polymers. Chem. Rev. 116, 6743–6836 (2016)CrossRefGoogle Scholar
  4. 4.
    Lapienis, G.: Star-shaped polymers having PEO arms. Prog. Polym. Sci. 34, 852–892 (2009)CrossRefGoogle Scholar
  5. 5.
    Khanna, K., Varshney, S., Kakkar, A.: Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polym. Chem. 1, 1171–1185 (2010)CrossRefGoogle Scholar
  6. 6.
    Hadjichristidis, N., Pitsikalis, M., Iatrou, H., Driva, P., Sakellariou, G., Chatzichristidi, M.: Polymers with star-related structures: synthesis, properties, and applications. In: Matyjaszewski, K., Möller, M. (eds.) Polymer science: a comprehensive reference, vol. 6, pp. 29–111. Elsevier, Amsterdam (2012)CrossRefGoogle Scholar
  7. 7.
    Chremos, A., Jeong, C., Douglas, J.F.: Influence of polymer architectures on diffusion in unentangled polymer melts. Soft Matter. 13, 5778–5784 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rodionov, V., Gao, H., Scroggins, S., Unruh, D.A., Avestro, A.-J., Fréchet, J.M.J.: Easy access to a family of polymer catalysts from modular star polymers. J. Am. Chem. Soc. 132, 2570–2572 (2010)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Beija, M., Laurent, S., Elst, L.V., Muller, R.N., Duong, H.T.T., Lowe, A.B., Davis, T.P., Boyer, C.: Macromolecular ligands for gadolinium MRI contrast agents. Macromolecules. 45, 4196–4204 (2012)CrossRefGoogle Scholar
  10. 10.
    Adkins, C.T., Dobish, J.N., Brown, C.S., Mayrsohn, B., Hamilton, S.K., Udoji, F., Radford, K., Yankeelov, T.E., Gore, J.C., Harth, E.: High relaxivity MRI imaging reagents from bimodal star polymers. Polym. Chem. 3, 390–398 (2012)CrossRefGoogle Scholar
  11. 11.
    Groll, J., Ademovic, Z., Ameringer, T., Klee, D., Moeller, M.: Comparison of coatings from reactive star shaped PEG-stat-PPG prepolymers and grafted linear PEG for biological and medical applications. Biomacromolecules. 6, 956–962 (2005)CrossRefGoogle Scholar
  12. 12.
    Jones, M.-C., Ranger, M., Leroux, J.-C.: pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjug. Chem. 14, 774–781 (2003)CrossRefGoogle Scholar
  13. 13.
    Meier, M.A.R., Schubert, U.S.: Combinatorial evaluation of the host-guest chemistry of star-shaped block copolymers. J. Comb. Chem. 7, 356–359 (2005)CrossRefGoogle Scholar
  14. 14.
    Thornton, P.D., Billah, S.M.R., Cameron, N.R.: Enzyme-degradable self-assembled hydrogels from polyalanine-modified poly(ethylene glycol) star polymers. Macromol. Rapid Comm. 34, 257–262 (2013)CrossRefGoogle Scholar
  15. 15.
    Ma, D., Liu, Z.-H., Zheng, Q.-Q., Zhou, X.-Y., Zhang, Y., Shi, Y.-F., Lin, J.-T., Xue, W.: Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol. Rapid Comm. 34, 548–552 (2013)CrossRefGoogle Scholar
  16. 16.
    Wu, W., Wang, W., Li, J.: Star polymers: advances in biomedical applications. Prog. Polym. Sci. 46, 55–85 (2015)CrossRefGoogle Scholar
  17. 17.
    Wesdemiotis, C.: Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew. Chem. Int. Ed. 56, 1452–1464 (2017)CrossRefGoogle Scholar
  18. 18.
    Wyttenbach, T., Gidden, J., Bowers, M.T.: Developments in ion mobility theory, instrumentation, and applications. In: Wilkins, C.L., Trimpin, S. (eds.) Ion mobility spectrometry-mass spectrometry, pp. 3–30. CRC Press, Boca Raton, FL (2011)Google Scholar
  19. 19.
    Trimpin, S., Clemmer, D.E., Larsen, B.S.: Snapshot, conformation, and bulk fragmentation: characterization of polymeric architectures using ESI-IMS-MS. In: Wilkins, C.L., Trimpin, S. (eds.) Ion mobility spectrometry-mass spectrometry, pp. 215–235. CRC Press, Boca Raton, FL (2011)Google Scholar
  20. 20.
    Bowers, M.T.: Ion mobility spectrometry: a personal view of its development at UCSB. Int. J. Mass Spectrom. 370, 75–95 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Foley, C.D., Zhang, B., Alb, A.M., Trimpin, S., Grayson, S.M.: Use of ion mobility spectrometry-mass spectrometry to elucidate architectural dispersity within star polymers. ACS Macro Lett. 4, 778–782 (2015)CrossRefGoogle Scholar
  22. 22.
    Liu, X., Cool, L.R., Lin, K., Kasko, A.M., Wesdemiotis, C.: Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers. Analyst. 140, 1182–1191 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wesdemiotis, C., Solak, N., Polce, M.J., Dabney, D.E., Chaicharoen, K., Katzenmeyer, B.C.: Fragmentation pathways of polymer ions. Mass Spectrom. Rev. 30, 523–559 (2011)CrossRefGoogle Scholar
  24. 24.
    Scionti, V., Wesdemiotis, C.: Tandem mass spectrometry analysis of polymer structures and architectures. In: Barner-Kowollik, C., Gruendling, T., Falkenhagen, J., Weidner, S. (eds.) Mass spectrometry in polymer chemistry, pp. 57–84. Wiley-VCH, Weinheim (2012)CrossRefGoogle Scholar
  25. 25.
    Polce, M.J., Ocampo, M., Quirk, R.P., Wesdemiotis, C.: Tandem mass spectrometry characteristics of silver-cationized polystyrenes: backbone degradation via free radical chemistry. Anal. Chem. 80, 347–354 (2008)CrossRefGoogle Scholar
  26. 26.
    Polce, M.J., Ocampo, M., Quirk, R.P., Leigh, A.M., Wesdemiotis, C.: Tandem mass spectrometry characteristics of silver-cationized polystyrenes: internal energy, size, and chain end versus backbone substituent effects. Anal. Chem. 80, 355–362 (2008)CrossRefGoogle Scholar
  27. 27.
    Gies, A.P., Geibel, J.F., Hercules, D.M.: MALDI-TOF/TOF CID study of poly(p-phenylene sulfide) fragmentation reactions. Macromolecules. 43, 952–967 (2010)CrossRefGoogle Scholar
  28. 28.
    Knop, K., Jahn, B.O., Hager, M.D., Crecelius, A., Gottschaldt, M., Schubert, U.S.: Systematic MALDI-TOF CID investigation on different substituted mPEG 2000. Macromol. Chem. Phys. 211, 677–684 (2010)CrossRefGoogle Scholar
  29. 29.
    Nasioudis, A., Memboeuf, A., Heeren, R.M.A., Smith, D.F., Vékey, K., Drahos, L., van den Brink, O.F.: Discrimination of polymers by using their characteristic collision energy in tandem mass spectrometry. Anal. Chem. 82, 9350–9356 (2010)CrossRefGoogle Scholar
  30. 30.
    Nasioudis, A., Heeren, R.M.A., van Doormalen, I., de Wijs-Rot, N., van den Brink, O.F.: Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers. J. Am. Soc. Mass Spectrom. 22, 837–844 (2011)CrossRefGoogle Scholar
  31. 31.
    Jeanne Dit Fouque, D., Maroto, A., Memboeuf, A.: Purification and quantification of an isomeric compound in a mixture by collisional excitation in multistage mass spectrometry experiments. Anal. Chem. 88, 10821–10825 (2016)CrossRefGoogle Scholar
  32. 32.
    Li, X., Chan, Y.-T., Newkome, G.R., Wesdemiotis, C.: Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83, 1284–1290 (2011)CrossRefGoogle Scholar
  33. 33.
    Fouquet, T., Phan, T.N.T., Charles, L.: Tandem mass spectrometry of electrosprayed polyhedral oligomeric silsesquioxane compounds with different substituents. Rapid Comm. Mass Spectrom. 26, 765–774 (2012)CrossRefGoogle Scholar
  34. 34.
    Yol, A.M., Dabney, D.E., Wang, S.-F., Laurent, B.A., Foster, M.D., Quirk, R.P., Grayson, S.M., Wesdemiotis, C.: Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2). J. Am. Soc. Mass Spectrom. 24, 74–82 (2013)CrossRefGoogle Scholar
  35. 35.
    Yol, A.M., Wesdemiotis, C.: Multidimensional mass spectrometry methods for the structural characterization of cyclic polymers. React. Funct. Polym. 80, 95–108 (2014)CrossRefGoogle Scholar
  36. 36.
    Josse, T., De Winter, J., Dubois, P., Coulembier, O., Gerbaux, P., Memboeuf, A.: A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polym. Chem. 6, 64–69 (2015)CrossRefGoogle Scholar
  37. 37.
    He, Q., Mao, J., Wesdemiotis, C., Quirk, R.P., Foster, M.D.: Synthesis and isomeric characterization of well-defined 8-shaped polystyrene using anionic polymerization, silicon chloride linking chemistry, and metathesis ring closure. Macromolecules. 50, 5779–5789 (2017)CrossRefGoogle Scholar
  38. 38.
    Chaicharoen, K., Polce, M.J., Singh, A., Pugh, C., Wesdemiotis, C.: Characterization of linear and branched polyacrylates by tandem mass spectrometry. Anal. Bioanal. Chem. 392, 595–607 (2008)CrossRefGoogle Scholar
  39. 39.
    Tintaru, A., Monnier, V., Bouillon, C., Giordanengo, R., Quéléver, G., Peng, L., Charles, L.: Structural characterization of poly(amino)ester dendrimers and related impurities by electrospray tandem mass spectrometry. Rapid Comm. Mass Spectrom. 24, 2207–2216 (2010)CrossRefGoogle Scholar
  40. 40.
    Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J., Holle, A.: A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965 (2003)CrossRefGoogle Scholar
  41. 41.
    Li, Y., Zhang, B., Hoskins, J.N., Grayson, S.M.: Synthesis, purification, and characterization of “perfect” star polymers via “click” coupling. J. Polym. Sci. Polym. Chem. 50, 1086–1101 (2012)CrossRefGoogle Scholar
  42. 42.
    Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001)CrossRefGoogle Scholar
  43. 43.
    Zhang, B., Zhang, H., Elupula, R., Alb, A.M., Grayson, S.M.: Efficient synthesis of high purity homo-arm and mikto-arm poly(ethylene glycol) stars using epoxide and azide-alkyne coupling chemistry. Macromol. Rapid Comm. 35, 146–151 (2014)CrossRefGoogle Scholar
  44. 44.
    Polce, M.J., Wesdemiotis, C.: Tandem mass spectrometry and polymer ion dissociation. In: Li, L. (ed.) MALDI mass spectrometry for synthetic polymer analysis, pp. 85–127. John Wiley & Sons, Inc., Hoboken, NJ (2009)CrossRefGoogle Scholar
  45. 45.
    Solak, N.: Structural characterization and quantitative analysis by interfacing liquid chromatography and ion mobility separation with multi-dimensional mass spectrometry. Ph.D. Dissertation, The University of Akron (2009). https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:47341
  46. 46.
    Cheng, C., Gross, M.L.: Applications and mechanisms of charge-remote fragmentation. Mass Spectrom. Rev. 19, 398–420 (2000)CrossRefGoogle Scholar
  47. 47.
    Liu, Z., Schey, K.L.: Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis. J. Am. Soc. Mass Spectrom. 16, 482–490 (2005)CrossRefGoogle Scholar
  48. 48.
    Yol, A.M.: Determination of polymer structures, sequences, and architectures by multidimensional mass spectrometry. Ph.D. Dissertation, The University of Akron (2013). https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:88724

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Knight Chemical LaboratoryThe University of AkronAkronUSA
  2. 2.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations